
Navendu Jain

Programmable Hardware #2

Focus

Current Programming Languages

Outline
Introduction

Cg

Shading and Lighting

Shading Languages

Related Issues and Discussion

Outline
Introduction

Cg

Shading and Lighting

Shading Languages

Related Issues and Discussion

Evolution of the GPU
Specialized and highly parallelized design

"Big Iron" to "Single Chip“

Moore’s Law cubed

More Realistic and More Interactive

Programmability

GPU Model

GPU Programming Model

Programmable
Vertex

Processor

Programmable
Fragment
Processor

Impact
Result

New H/w features, many APIs

Assembly Coding

Demand for more flexibility, control

Solution
Raise the level of abstraction

Programmability

Give me the power – Developer!!

Introduction

Cg

Shading and Lighting

Shading Languages

Related Issues and Discussion

Cg
“C for graphics” ; developed by NVIDIA

Ease of Programming (tweak & run)

Virtualizes the hardware

Library of Shaders

Run-time compilation - optimization

Portable Programs

Language Profiles

GPUs don’t support the same capabilities

Profile defines a subset of the language
supported on a particular hardware

Examples:
Vertex Shaders

CG_PROFILE_VS_2_X, CG_PROFILE_ARBVP1
Fragment Shaders

CG_PROFILE_PS_2_X, CG_PROFILE_ARBFP1

Programs

Operate on streams of data

Program Inputs and Outputs
Varying (per-vertex, per-fragment values)
Uniform (transformation matrix)

Features
In-built Vector & Matrix support
No support for pointers
Modifiable function params by value-result
Swizzle float3(a, b, c).zyx yields float3(c, b, a)

Cg runtime library

Introduction

Cg

Shading and Lighting

Shading Languages

Related Issues and Discussion

Background :
Shading and Lighting

Shading
color, texture, optical, anistropic properties,
illumination environment

Aspects
Surface reflectance

Ambient, Diffuse, Specular, wavelength, polarization

Light source distribution
Point light sources, Geometric Primitives
Intensity = f(x, y, z, λ, D)

Models of Shading

Inherently local processes

Global Illumination process

Kajiya's rendering equation
General Illumination Process

Local/ Global are independent aspects

i(x,x') = v(x,x') [l(x,x') + r(x,x',x'') i(x',x'') dx'‘]

Types of Shaders

Light Source l(x,x')
Color, intensity emitted from a point

Surface Reflectance r(x,x',x'')
Integral of bidirectional reflectance with incoming light

Volume or Atmosphere v(x,x')
Scattering Effects

Other intersections handled by the Renderer

Introduction

Cg

Shading and Lighting

Shading Languages

Related Issues and Discussion

Shading Languages
Programming shading computations

Extend shading and lighting formulae, types
of material and light sources

Offline
Hanrahan’s, RenderMan

Real-Time
Stanford Shading Language, NVIDIA’s Cg

Differences
Real-Time Shading

Interactive apps
Lighting and Shader
Anti-aliasing harder
Performance critical
Frame Rate (FPS)
Execute on GPU
Rendering cost per frame
is bounded

Offline Shading

Fixed Viewpoint
Fine Tuning

Non real-time

Execute on CPU
Differ by orders of
magnitude

Shading approaches
Object Space (at vertices)

REYES (Pixar’s PRMan)
Change position (displacement map, procedural)

Dice Shader
Program

Sample

3D Space

Geometric
Primitives

curved surfaces

Grids of
micropolygans

in 3D

Shaded grids of
micropolygans

in 3D Points
In screen

space

Screen Space

Screen Space (at pixels)

Graphics hardware approach
Hybrid vertex/pixel shading

Triangle Vertices
Fragment Shading

Can only change screen space depth

Vertex
Shader

Program

Sample
(rasterize)

Fragment
Shader

Program

3D Space

Geometric
Primitives
Triangular
Polygons

Triangles
In screen

space

Samples in
screen space
(fragments) Points

In screen
space

Screen Space

Pros and Cons
Object Space

Computations per
polygon
Inexpensive motion-
blur, depth of field
effects
Anti-aliasing complex
Geometric Normal

Hybrid Model

Computations per
pixel
Expensive
Simple derivative
computations
Only shading normal

Introduction

Cg

Shading and Lighting

Shading Languages

Related Issues and Discussion

Related Issues

Parallelism
“Single” vertex model
Memory access
Multiple rendering passes

Computation model
SPMD (vertex)
SIMD (fragment)

Related Issues (contd.)

Data Types (Low, High Precision)

Memory/Register resource limits

Host-to-GPU Bandwidth

Discussion

Surface and Light Shaders
Separability
Z-buffer – surface renderer
Expressibility power
User’s flexibility
Binding Model

Early-binding (expensive)
Late-binding (optimize)

Discussion (contd.)

Sharing Computations
FP executed more than vertex programs

Move computation from FP to VP
When : Result is

constant over all fragments
Linear across a triangle
Nearly linear across a triangle

Move from VP to CPU (uniform params)

Discussion (contd.)

Optimizations
Vector operations, swizzle
Library of shaders
Low precision data types
Minimize if/then/else
H/W – S/W approach

Thanks

References

"Real-Time Programmable Shading", excerpt
from "Texturing and Modeling: A Procedural
Approach", Ebert et al, pp. 97-121.

Cg toolkit user's manual", NVIDIA

Language for Shading and Lighting Calculations“
Hanrahan and Lawson, SIGGRAPH 90

