\/

Programmable Hardware #2

Focus

Current Programming Languages

Navendu Jain

(1.
N

N

Outline

Introduction

Cg

Shading and Lighting
Shading Languages

Related Issues and Discussion

N

Outline

4 Introduction

Cg

Shading and Lighting
Shading Languages

Related Issues and Discussion

N

Evolution of the GPU

@ Specialized and highly parallelized design

"Big Iron" to "Single Chip"

Moore’s Law cubed

More Realistic and More Interactive

Programmability

GPU Model

b

fpplication
oG

A0 AP
Commands

XD APE
Opentil
o
GPU - GPW Baoundary

N

GPU
Command &
[hate Sirenrm Axsmmbied Pixcil
Wommx Ineleo Polwgans, Lines Loscaticn Pl
Stream & Points Skrmam Updntas

; G I II:HHH'I'I ooy Fostorization & | ooy B9 | ooy | T—-—
rant

N

GPU Programming Model

b

fpplication
oG

D AP
Commands

XD APE
Opentil
o
GPU - GPW Baoundary

GPU
Command &
Dusts Strearm Asgmmldid Pcol
Warta [Palrgans, Lines Losea i Pixel

St ream & Points Lipdntes

Programmable
Vertex
Processor

Programmable
Fragment
Processor

N

Impact

Result

= New H/w features, many APIs
s Assembly Coding

= Demand for more flexibility, control

Solution

= Raise the level of abstraction
= Programmability
= Give me the power — Developer!!

N

L

Introduction

¢Ca

Shading and Lighting
Shading Languages

Related Issues and Discussion

N

Cg

L

"C for graphics” ; developed by NVIDIA

= Ease of Programming (tweak & run)
= Virtualizes the hardware
= Library of Shaders

Run-time compilation - optimization

Portable Programs

N

Language Profiles

GPUs don't support the same capabilities

Profile defines a subset of the language

supported on a particular hardware

#® Examples:

s Vertex Shaders
+ CG_PROFILE_VS_2 X, CG_PROFILE_ARBVP1

= Fragment Shaders
+ CG_PROFILE_PS_2_X, CG_PROFILE_ARBFP1

N

Programs

Operate on streams of data

Program Inputs and Outputs
m Varying (per-vertex, per-fragment values)

= Uniform (transformation matrix)

Features
= In-built Vector & Matrix support
= No support for pointers
= Modifiable function params by value-result
m Swizzle float3(a, b, c).zyx yields float3(c, b, a)

~Cg runtime library

Application

N

L

Introduction
@ Cg

Shading and Lighting

Shading Languages

Related Issues and Discussion

Background :
Shading and Lighting

Shading

= color, texture, optical, anistropic properties,
illumination environment

Aspects

= Surface reflectance
» Ambient, Diffuse, Specular, wavelength, polarization

= Light source distribution

+» Point light sources, Geometric Primitives
+ Intensity = f(x, y, z, A, D)

Models of Shading

N

Inherently local processes

Global Illumination process

Kajiya's rendering equation
= General Illumination Process
= Local/ Global are independent aspects

i(x,x") = v(x,x) [I(x,x") +Jr(x,x',x") i(x',x") dx"]

Types of Shaders

N

Light Source 1(x,x")

= Color, intensity emitted from a point

Surface Reflectance r(x,x',x'")
= Integral of bidirectional reflectance with incoming light

Volume or Atmosphere v(x,x")

= Scattering Effects
= Other intersections handled by the Renderer

N

L

Introduction
Cg
Shading and Lighting

Shading Lanquages

Related Issues and Discussion

N

Shading Languages

Programming shading computations

Extend shading and lighting formulae, types
of material and light sources

Offline

= Hanrahan’s, RenderMan

Real-Time
» Stanford Shading Language, NVIDIA's Cg

Differences

N

' Real-Time Shading

Interactive apps

Lighting and Shader
Anti-aliasing harder

Performance critical
Frame Rate (FPS)

Execute on GPU

Rendering cost per frame

Offline Shading

is bounded

Fixed Viewpoint
Fine Tuning

Non real-time

Execute on CPU

Differ by orders of
magnitude

Shading approaches

N

QObject Space (at vertices)

= REYES (Pixar's PRMan)
+ Change position (displacement map, procedural)

Grids of Shaded grids of
3D Space micropolygans micropolygans e

Geometric : in 3D Shader in 3D E&fﬂ%ﬂ}ﬁ%
Primitives Program G
2B 'ﬂg P i3 ed

curved surfaces

Screen Space (at pixels)

Graphics hardware approach

N

#Hybrid vertex/pixel shading
= Triangle Vertices

= Fragment Shading
» Can only change screen space depth

Screen Space
NI NEE NENENENENENINININCNINLNINIEINIEI NI LI mIImminsm
sloadles malfiailes saltirheles nulteholin attointen noliri ey St ey sl tedles
- %ﬁﬂ% Sl B Bp e a2 s s e Sl b e b
Triangles s el ey mlasisles sple nale relaleley spleg sl slarsales Sl
3D Space In screen e S b il
G | Vertex e I Fragment fz-ppregie:
eometric Space ample BELrinEnEr
S Shader P HlEpt[elE e eyt DY Shader Elfstreer
Primitives (rasterize) e mnEay A o
_ Program 2 el Sl ale Slarogd e ce
Triangular AR e e e B ELI e
lopedlad|aleeasles ultertels: o Domememememememmmoet - < 1o 17 ol Tl
Polvaons e e e e e e g D e e
Y9 mplogt mglar el el alee el ol ol ot ot gt aptagt ptogt oyl e

Pros and Cons

N

JObject Space

Computations per
polygon

Inexpensive motion-
blur, depth of field
effects

Anti-aliasing complex
Geometric Normal

Hybrid Model

4 Computations per
pixel
Expensive

Simple derivative
computations

Only shading normal

N

L

Introduction

@ Cg

Shading and Lighting
Shading Languages

Related Issues and Discussion

Related Issues

N

#Parallelism
= 'Single” vertex model
s Memory access
= Multiple rendering passes

#Computation model
s SPMD (vertex)
= SIMD (fragment)

Related Issues (contd.)

#Data Types (Low, High Precision)

#Memory/Register resource limits

#Host-to-GPU Bandwidth

Discussion

N

#Surface and Light Shaders
= Separability
» /-buffer — surface renderer
m Expressibility power

m User’s flexibility

= Binding Model
+ Early-binding (expensive)
+» Late-binding (optimize)

N

Discussion (contd.)

#Sharing Computations
= FP executed more than vertex programs

#Move computation from FP to VP

= When : Result is
+ constant over all fragments
+ Linear across a triangle
* Nearly linear across a triangle

#Move from VP to CPU (uniform params)

N

Discussion (contd.)

#0ptimizations
= Vector operations, swizzle

= Library of shaders

= Low precision data types
s Minimize if/then/else

= H/'W — S/W approach

Thanks

References

N

"Real-Time Programmable Shading", excerpt
from "Texturing and Modeling: A Procedural
Approach", Ebert et al, pp. 97-121.

Cg toolkit user's manual”, NVIDIA

Language for Shading and Lighting Calculations"
Hanrahan and Lawson, SIGGRAPH 90

