
Jason DaleJason Dale

CS395T - Realtime GraphicsCS395T - Realtime Graphics

02/11/200302/11/2003

Programmable Hardware #1: Programmable Hardware #1:
Basic Hardware CapabilitiesBasic Hardware Capabilities

Yee Haw !!!

OverviewOverview

My PerspectiveMy Perspective
Review Paper 1: "Parallel Computers for Graphics Applications"Review Paper 1: "Parallel Computers for Graphics Applications"

GoalsGoals
Chap - The predecessor to FlapChap - The predecessor to Flap
FlapFlap
C4 extentionsC4 extentions

Review Paper 2: "A User-Programmable Vertex Engine"Review Paper 2: "A User-Programmable Vertex Engine"
ISA / Datatypes / Low-level programmingISA / Datatypes / Low-level programming
Hardware (briefly)Hardware (briefly)
High-level programmingHigh-level programming

Discussion and Thoughts on the FutureDiscussion and Thoughts on the Future

My PerspectiveMy Perspective

Got the feeling that many people in the class are graphics whizzesGot the feeling that many people in the class are graphics whizzes

My background is with "General Purpose" CPUs (Servers)My background is with "General Purpose" CPUs (Servers)
Hardware-centric skewHardware-centric skew

Used to do logic designUsed to do logic design
Currenly do processor performance analysisCurrenly do processor performance analysis

BenchmarksBenchmarks
Pipeline stagesPipeline stages
CPI stacksCPI stacks

Feel free to interruptFeel free to interrupt
For questionsFor questions
To share interesting factoidsTo share interesting factoids
To correct - 3rd day with OpenGL To correct - 3rd day with OpenGL ☺☺

Paper 1Paper 1

"Parallel Computers for Graphics Applications""Parallel Computers for Graphics Applications"
Adam Levinthal, Pat Hanrahan, Mike Paquette, Jim LawsonAdam Levinthal, Pat Hanrahan, Mike Paquette, Jim Lawson
Authors from Pixar - that's interestingAuthors from Pixar - that's interesting

Typically think of "Toy Story" 3D animationTypically think of "Toy Story" 3D animation
Work evolved from 2d film printer insteadWork evolved from 2d film printer instead

Published in 1987Published in 1987
"Wow-factor" drops by 2"Wow-factor" drops by 2 (2003-1987)(2003-1987)

Comparison Hardware: VAX 11/780 minicomputerComparison Hardware: VAX 11/780 minicomputer
Flap is 15"x18" board (several chips running at 10 MHz)Flap is 15"x18" board (several chips running at 10 MHz)
Chap/Flap seem flexible -can see a modern GPU in thereChap/Flap seem flexible -can see a modern GPU in there

Have a quick overview of ChapHave a quick overview of Chap
Talk About FlapTalk About Flap

Hardware and AddressingHardware and Addressing
C4 Data Structures and Programming LanguageC4 Data Structures and Programming Language

Chap overviewChap overview

CHACHAnnel nnel PProcessor (an actual Pixar product)rocessor (an actual Pixar product)
Designed for Back-end work (pixel operations)Designed for Back-end work (pixel operations)

1024x1024 pixel 2D image processing1024x1024 pixel 2D image processing
Image blending / compositingImage blending / compositing
BluescreeningBluescreening
Edge filteringEdge filtering
Rotation/perspective transformationRotation/perspective transformation
Color space transformation / color correctionColor space transformation / color correction

4-way SIMD4-way SIMD
4 color components - RGBA4 color components - RGBA
16 bit fixed-point is the fundimental data type16 bit fixed-point is the fundimental data type

16 bit pre/post-increment addressing modes16 bit pre/post-increment addressing modes
Uses C4 High-level LanguageUses C4 High-level Language

Flap overviewFlap overview

FLFLoating-point oating-point AArray rray PProcessorrocessor
Designed for front-end work (points, normals, etc)Designed for front-end work (points, normals, etc)

3D transformations/clipping3D transformations/clipping
ShadingShading
Evaluation of cubic polynomials by finite differenceEvaluation of cubic polynomials by finite difference
Geometric operations on meshes and quadrilateralGeometric operations on meshes and quadrilateral

Includes:Includes:
Integer processor (runs program, dictates control flow)Integer processor (runs program, dictates control flow)
32 bit single precision, 4way SIMD array (execution engine)32 bit single precision, 4way SIMD array (execution engine)
Interface bussesInterface busses

Sysbus (host interface)Sysbus (host interface)
Gbus (external high-speed memory and renderer interface)Gbus (external high-speed memory and renderer interface)

4 dedicated RAM banks and rotate logic4 dedicated RAM banks and rotate logic
More addressing modes than Chap (mul/div in agen)More addressing modes than Chap (mul/div in agen)
Also uses C4 Programming LanguageAlso uses C4 Programming Language

Flap hardwareFlap hardware

Taken from "Parallel Computers for Graphics Applications" - (C) 1987 - The Association for Computing Machinery

Flap low-level Flap low-level
programmingprogramming

C4 Language for low-level parallelismC4 Language for low-level parallelism
Superset of C - meshes with their C/UNIX development Superset of C - meshes with their C/UNIX development
environmentenvironment
Features to extract SIMD parallelismFeatures to extract SIMD parallelism

Parallel Data TypesParallel Data Types
Individual Processor ControlIndividual Processor Control

Hardware not explained in great detailHardware not explained in great detail
Looks somewhat like predication (patented)Looks somewhat like predication (patented)

Access types for scalar and vector dataAccess types for scalar and vector data
word - 32 bit single precisionword - 32 bit single precision
lrow - think it means "line row" / "logical row"lrow - think it means "line row" / "logical row"
trow - think it means "tesselated row"trow - think it means "tesselated row"
tcol - think it means "tesselated column"tcol - think it means "tesselated column"

Tesselated memory design not clearTesselated memory design not clear

C4 Data TypesC4 Data Types

Added "parallel" type modifier to CAdded "parallel" type modifier to C
Allows any data type to be replicated 4x (32bit only?)Allows any data type to be replicated 4x (32bit only?)
Equivalent to a vector (or a row in a 4x4 matrix)Equivalent to a vector (or a row in a 4x4 matrix)
Typecasting defined (replicate ints to parallel ints)Typecasting defined (replicate ints to parallel ints)
Similiar to SIMD data types on other systemsSimiliar to SIMD data types on other systems
Alignment rules weren't clear (pointers must be aligned?)Alignment rules weren't clear (pointers must be aligned?)
Uses a "trow" memory accessUses a "trow" memory access

Added "component" type modifier to CAdded "component" type modifier to C
Equivalent to a column in a 4x4 matrixEquivalent to a column in a 4x4 matrix
Uses a "tcol" memory accessUses a "tcol" memory access
Typecasting rules weren't clearTypecasting rules weren't clear

parallel int x, y[2];

typedef struct par_int{
 int chan[4];
};
par_int x, y[2];

x = y[1].chan[2];

x.chan[0] = y[1].chan[2];
x.chan[1] = y[1].chan[2];
x.chan[2] = y[1].chan[2];
x.chan[3] = y[1].chan[2];

C4 C

C and C4 statementsC and C4 statements

Flap Access TypesFlap Access Types

Vector Access Types - calculated from a pointerVector Access Types - calculated from a pointer
tword:tword: single 32 bit value - replicated to all subprocessors in arraysingle 32 bit value - replicated to all subprocessors in array

lrow:lrow: 4 consecutive words directly mapped to subprocessors4 consecutive words directly mapped to subprocessors

trow:trow: 4 consecutive aligned words rotated to subprocessors4 consecutive aligned words rotated to subprocessors

tcol:tcol: 4 words with stride of 4 words (component access)4 words with stride of 4 words (component access)

P1 P2 P3 P4

P3 P1 P2 P4

P4P1 P2 P3

P{1234}

Flap SIMD ControlFlap SIMD Control
Code should be primarily SIMD (matrices, dot, cross, etc)Code should be primarily SIMD (matrices, dot, cross, etc)
But - need to control individual "subprocessors" sometimesBut - need to control individual "subprocessors" sometimes
Solution - "Runflag" control register and stackSolution - "Runflag" control register and stack

Sub-processors can be individually enabled / disabledSub-processors can be individually enabled / disabled
One status and one run bit per subprocessor, global condOne status and one run bit per subprocessor, global cond
Runflag Stack enables nested control flowRunflag Stack enables nested control flow

Push - Used when entering a do-while loopPush - Used when entering a do-while loop
Pop - Used at end of "if" statementPop - Used at end of "if" statement
While - evaluates conditional and pops if falseWhile - evaluates conditional and pops if false
If/elseIf/else

Combination of push / evaluate / eval complement / popCombination of push / evaluate / eval complement / pop
Both executed if cond / !cond on any running subprocessorBoth executed if cond / !cond on any running subprocessor
See logic on next page and the exampleSee logic on next page and the example

Set - Replace top of Runflag stack with an immediate valueSet - Replace top of Runflag stack with an immediate value
Force - Force the Run bits for the current instruction onlyForce - Force the Run bits for the current instruction only

Run 1 Run 2 Run 3 Run 4Run 1 Run 2 Run 3 Run 4Run 1 Run 2 Run 3 Run 4Run 1 Run 2 Run 3 Run 4Run 1 Run 2 Run 3 Run 4Run 1 Run 2 Run 3 Run 4

Runflag OperationRunflag Operation

Run1 Run2 Run3 Run4

Cond1 Cond2 Cond3 Cond4

Runflag Stack

C

Registers

Conditional
Evaluation

New Runflag
Run1' Run2' Run3' Run4' only updated if "C" is true

TestCase(Dim, Sum)TestCase(Dim, Sum)
parallel int dim;parallel int dim;
parallel int * sum;parallel int * sum;

{{
if (dim > 0)if (dim > 0)
{{

dim = dim - 1;dim = dim - 1;
if(all(dim > 0))if(all(dim > 0))

sum++;sum++;
}}
if(any(dim == 0)) if(any(dim == 0))

*sum++;*sum++;

return (sum) ;return (sum) ;
}}

C4 Example CodeC4 Example Code

 dim sum Vector C

sum

0 3 71 6 8 3 3 -- - -0 2 4 9 -

11 0 10 3 71 6 8 3 3 11 0 10 2 4 9 1

11 0 10 2 60 6 8 3 3 11 0 10 2 4 9 1

01 1 00 2 60 6 8 3 3 01 1 00 2 4 9 1

01 1 00 2 60 6 8 3 3 01 1 00 2 4 9 1

11 0 10 2 60 6 8 3 3 10 0 10 2 4 9 01

Taken from "Parallel Computers for Graphics Applications" - (C) 1987 - The Association for Computing Machinery

0(instruction not executed)
(2x pop then push stack)

Runflag ControlRunflag Control

Runflag control is similiar to predication:Runflag control is similiar to predication:
Integer Processor might execute both sides of a branchInteger Processor might execute both sides of a branch
Predication - typically enables/disables instruction writebackPredication - typically enables/disables instruction writeback
Runflag -Runflag - selectively enable/disable processor executionselectively enable/disable processor execution

But unlike predication:But unlike predication:
Can skip code blocks if condition is false on all subprocessorsCan skip code blocks if condition is false on all subprocessors

More complex - merged predicate and branch mechanismMore complex - merged predicate and branch mechanism
Efficient when skipped block has many instructionsEfficient when skipped block has many instructions

Targeting something slightly different than modern predicationTargeting something slightly different than modern predication
Isn't meant to eliminate control flow like most predicationIsn't meant to eliminate control flow like most predication
Modern predication is good for long pipes / high frequencyModern predication is good for long pipes / high frequency

QuestionsQuestions

Questions on the first paper?Questions on the first paper?

Paper 2Paper 2
"A User-Programmable Vertex Engine""A User-Programmable Vertex Engine"

Erik Lindholm, Mark Kilgard, Henry MoretonErik Lindholm, Mark Kilgard, Henry Moreton
Published in 2001Published in 2001

Modern single chip GPU design (NVIDIA GeForce 3)Modern single chip GPU design (NVIDIA GeForce 3)
.18u, ~550pins, 700-960 Gops/s, 6-8 GB/s mem, 200+ MHz.18u, ~550pins, 700-960 Gops/s, 6-8 GB/s mem, 200+ MHz

Paper Focus is Vertex Shader (not Fragment/Pixel processor)Paper Focus is Vertex Shader (not Fragment/Pixel processor)
Presents a flexible / powerful / easy to program designPresents a flexible / powerful / easy to program design

Originally evolved from fixed function pipelineOriginally evolved from fixed function pipeline
Exploits several forms of parallelismExploits several forms of parallelism

4x SIMD, single precision IEEE format (non IEEE modes)4x SIMD, single precision IEEE format (non IEEE modes)
Chip Multiprocessing (? not 100% clear on this)Chip Multiprocessing (? not 100% clear on this)

Vertex processor (or processors?)Vertex processor (or processors?)
Multiple Pixel Shaders (Processor or state machine?)Multiple Pixel Shaders (Processor or state machine?)

Multithreading (transparent)Multithreading (transparent)

Discuss datatypes and architectureDiscuss datatypes and architecture
Discuss hardware (briefly)Discuss hardware (briefly)
Discuss programming model / APIDiscuss programming model / API

Motivations for designMotivations for design

ProgrammabilityProgrammability
Quickly evolving API needs programmable hardwareQuickly evolving API needs programmable hardware
Programmable hardware lessens need for fixed APIProgrammable hardware lessens need for fixed API

Ship-ability (dictates a lot of the architecture)Ship-ability (dictates a lot of the architecture)
Design Time / Design Resources / ComplexityDesign Time / Design Resources / Complexity
Platform independance / Standard APIPlatform independance / Standard API
Commodity Pricing (chip area / yield)Commodity Pricing (chip area / yield)

Do GPUs have an advantage over CPUs here?Do GPUs have an advantage over CPUs here?
PerformancePerformance

The motivation no-one ever talks aboutThe motivation no-one ever talks about
What about marketing numbers?What about marketing numbers?
CPU has GHz, GPU has GB/sec and Gops/sCPU has GHz, GPU has GB/sec and Gops/s
Maybe with GPU, marketing numbers are not as evilMaybe with GPU, marketing numbers are not as evil

Programming ModelProgramming Model

Vertex is the most common element to operate onVertex is the most common element to operate on
High parallelism / low complexity with verticesHigh parallelism / low complexity with vertices
Triangle / polygon / other primitive could have been usedTriangle / polygon / other primitive could have been used

Better frustrum clipping, perspective divide, viewport scale Better frustrum clipping, perspective divide, viewport scale
But those can be done in a fixed-function pipeBut those can be done in a fixed-function pipe

Data Types and Hardware Support for themData Types and Hardware Support for them
32 bit Single Precision FP scalars (same format as IEEE, but...)32 bit Single Precision FP scalars (same format as IEEE, but...)
4 way FP SIMD vector (points, colors, normals)4 way FP SIMD vector (points, colors, normals)

Hardware has no-overhead "swizzling" of vector elementsHardware has no-overhead "swizzling" of vector elements
Rotate of vector elements (good for fast cross-product)Rotate of vector elements (good for fast cross-product)
Replication to convert Scalars into VectorsReplication to convert Scalars into Vectors
Can make constants [-1,0,1,2] -> [0,0,0,1] or [-1,-1,-1,0]Can make constants [-1,0,1,2] -> [0,0,0,1] or [-1,-1,-1,0]
Could replace 2 or 3 "regular" SIMD instructionsCould replace 2 or 3 "regular" SIMD instructions

Write mask bits on all instruction writesWrite mask bits on all instruction writes
Hardware support for no-overhead negation of valueHardware support for no-overhead negation of value

Integer used in address register (constant index)Integer used in address register (constant index)
Some kind of conversion hardware from byte/short/int to floatSome kind of conversion hardware from byte/short/int to float

Programming Model Programming Model (cont)(cont)

5 Register sets (input, output, constant, GPR, address)5 Register sets (input, output, constant, GPR, address)

Vertex Program Input register bankVertex Program Input register bank
A.K.A "attribute register" bank, "vertex attribute register" bankA.K.A "attribute register" bank, "vertex attribute register" bank
Composed of 16 quadwords, one read port (that the Vertex Shader sees)Composed of 16 quadwords, one read port (that the Vertex Shader sees)
Registers have defined functionsRegisters have defined functions

In fixed-function mode, they seem strictly definedIn fixed-function mode, they seem strictly defined
In program mode, seems more like an ABIIn program mode, seems more like an ABI

Registers initialized to (0.0, 0.0, 0.0, 1.0) - saves bandwidthRegisters initialized to (0.0, 0.0, 0.0, 1.0) - saves bandwidth
Program output (pixel shader input)Program output (pixel shader input)

Strictly defined registers (next stage is fixed-function pipe)Strictly defined registers (next stage is fixed-function pipe)
Some registers (colors) automatically clamped to (0.0, 1.0)Some registers (colors) automatically clamped to (0.0, 1.0)
Initialized to (0, 0, 0, 1) at start of programInitialized to (0, 0, 0, 1) at start of program

System has a very dataflow-ish / streaming natureSystem has a very dataflow-ish / streaming nature
Program starts on write of attribute register 0Program starts on write of attribute register 0
Stops when output register 0 written (does this start the pixel shader?)Stops when output register 0 written (does this start the pixel shader?)

Attribute RegistersAttribute Registers

Vertex
Attribute
Register

Conventional
Per-Vertex
Parameter

Conventional Per-Vertex
Parameter Command

Conventional
Component
Mapping

0 Vertex Position glVertex x, y, z, w
1 Vertex weights glVertexWeightEXT w, 0, 0, 1
2 Normal glNormal
3 Primary Color glColor r, g, b, a
4 Secondary Color glSecondaryColorEXT r, g, b, a
5 Fog Coordinate glFogCoordEXT f, 0, 0, 1
6 - - -
7 - - -
8 Texture Coordinate 0 glMultiTexCoordARB (GL_TEXTURE0...) s, t, r, q
9 Texture Coordinate 1 glMultiTexCoordARB (GL_TEXTURE1...) s, t, r, q
10 Texture Coordinate 2 glMultiTexCoordARB (GL_TEXTURE2...) s, t, r, q
11 Texture Coordinate 3 glMultiTexCoordARB (GL_TEXTURE3...) s, t, r, q
12 Texture Coordinate 4 glMultiTexCoordARB (GL_TEXTURE4...) s, t, r, q
13 Texture Coordinate 5 glMultiTexCoordARB (GL_TEXTURE5...) s, t, r, q
14 Texture Coordinate 6 glMultiTexCoordARB (GL_TEXTURE6...) s, t, r, q
15 Texture Coordinate 7 glMultiTexCoordARB (GL_TEXTURE7...) s, t, r, q

Output RegistersOutput Registers

Mnemonic Full Name Description
HPOS Homogenous Clip Space Position xyzw
COL0 Diffuse Color rgba
COL1 Specular Color rgba
FOGP Fog Distance f***
PSIZ Point Size p***
TEX0 Texture coordinate 0 strq

TEX7 Texture coordinate 7 strq

How are vertices are reassembled into polygons?

Programming Model Programming Model (cont)(cont)

Constant bank of 96 quadwordsConstant bank of 96 quadwords
Loaded before the vertex program - not writable by programLoaded before the vertex program - not writable by program
User definable - matrices, lights, plane coefficients, etc.User definable - matrices, lights, plane coefficients, etc.
Made large enough for "indexed skinning" (?)Made large enough for "indexed skinning" (?)
Also single portedAlso single ported

One address registerOne address register
For indexing into the constant register mapFor indexing into the constant register map
Out-of-bounds values return 0sOut-of-bounds values return 0s

Internal Register set of 12 quadwordsInternal Register set of 12 quadwords
The "General Purpose Register" setThe "General Purpose Register" set
3 read ports, 1 write port3 read ports, 1 write port
Initialized to 0s when program beginsInitialized to 0s when program begins

Programming Model Programming Model (cont)(cont)

Instruction set of 17 instructionsInstruction set of 17 instructions
Initially derived from profiling of fixed-function pipelineInitially derived from profiling of fixed-function pipeline

50% of instructions were MUL, ADD, MAD50% of instructions were MUL, ADD, MAD
40% of instructions were dot products40% of instructions were dot products

All instructions required to have the same latencyAll instructions required to have the same latency
Pipe control becomes trivial Pipe control becomes trivial

Multithreading control could be almost freeMultithreading control could be almost free
No instruction scheduling, no dependancies, no hazardsNo instruction scheduling, no dependancies, no hazards

But puts a limit on individual instruction complexityBut puts a limit on individual instruction complexity
No breaking the pipeline - divide/square root/denormilizationNo breaking the pipeline - divide/square root/denormilization
What about LIT and DST? (yes - same latency)What about LIT and DST? (yes - same latency)
Reminicent of RISC/CISC tradeoffReminicent of RISC/CISC tradeoff

All instructions have 4 element write-maskAll instructions have 4 element write-mask
Control FlowControl Flow

It's simple - there is none!It's simple - there is none!
Programs are limited to 128 consecutive instructionsPrograms are limited to 128 consecutive instructions
If/else implemented by sum-of-productsIf/else implemented by sum-of-products

Compatibility IssuesCompatibility Issues
Previous architecture had lighting enginePrevious architecture had lighting engine

Heavily lit scenes had 2x speedup in fixed-function modeHeavily lit scenes had 2x speedup in fixed-function mode
Add complex instructions (faster than a RISCy vertex program)Add complex instructions (faster than a RISCy vertex program)

DST - For constructing attenuating factorsDST - For constructing attenuating factors
Used for: (K0, K1, K2) • (1, d, d*d) = K0 + K1*d + K2*d*dUsed for: (K0, K1, K2) • (1, d, d*d) = K0 + K1*d + K2*d*d
d is some distanced is some distance
1/d and d*d are natural byproducts of vector normalization1/d and d*d are natural byproducts of vector normalization

LIT - Does ambient, diffuse, and specular lightingLIT - Does ambient, diffuse, and specular lighting
Replaces a ~10 instruction vertex programReplaces a ~10 instruction vertex program
Had to add LOG and EXP hardware (expose these to ISA)Had to add LOG and EXP hardware (expose these to ISA)

output.x = 1.0 ;output.x = 1.0 ; // ambient// ambient
output.y = max(N•L, 0.0) ;output.y = max(N•L, 0.0) ; // difuse// difuse
output.z = 0.0 ;output.z = 0.0 ; // specular// specular
if ((N•L > 0.0) && (p == 0))if ((N•L > 0.0) && (p == 0))

output.z = 1.0 ;output.z = 1.0 ;
else if((N•L > 0.0) && (N•H > 0.0))else if((N•L > 0.0) && (N•H > 0.0))

output.z = (N•H)output.z = (N•H) p p ;;
output.w = 1.0 ;output.w = 1.0 ;

(NA, d*d, d*d, NA)(NA, d*d, d*d, NA) (NA, 1/d, NA, 1/d)(NA, 1/d, NA, 1/d)

DSTDST

(1, d, d*d, 1/d)(1, d, d*d, 1/d)

DSTDST LITLIT

Instruction SetInstruction Set

Mnemonic Full Name Description
MOV Move vector -> vector
MUL Multiply vector -> vector
ADD Add vector -> vector
MAD Multiply and add vector -> vector
DST Distance vector -> vector
MIN Minimum vector -> vector
MAX Maximum vector -> vector
SLT Set on less than vector -> vector
SGE Set on greater or equal to vector -> replicated scalar
RCP Reciprocal vector -> replicated scalar
RSQ Reciprocal square root vector -> replicated scalar
DP3 3 term dot product vector -> replicated scalar
DP4 4 term dot product vector -> replicated scalar
LOG Log base 2 miscellaneous
EXP Exp base 2 miscellaneous
LIT Phong Lighting miscellaneous
ARL Address Register Load miscellaneous

Programming Model - Programming Model -
Miscellaneous thingsMiscellaneous things

Not IEEE compatibleNot IEEE compatible
No denormalized numbers or exceptionsNo denormalized numbers or exceptions
Fixed rounding to -infinityFixed rounding to -infinity
0.0 times X is 0.0, 1.0 times X is X (even if X = NaN or infinity) 0.0 times X is 0.0, 1.0 times X is X (even if X = NaN or infinity)
LOG and EXP are only accurate to 11 mantissa bitsLOG and EXP are only accurate to 11 mantissa bits

Typically operating on 8 bit color values - OKTypically operating on 8 bit color values - OK
Full precision with ~10 more instructionsFull precision with ~10 more instructions

RCP and RSQ are accurate to about 1.5 bitsRCP and RSQ are accurate to about 1.5 bits
Definitely different than a common CPUDefinitely different than a common CPU

The "phong lighting" instruction really gives it awayThe "phong lighting" instruction really gives it away
17 instructions - and none of them are branches17 instructions - and none of them are branches
Architecture defines ported-ness and inital values of registersArchitecture defines ported-ness and inital values of registers
Everything is FP - even index into memory! Everything is FP - even index into memory! (Get me some water!)(Get me some water!)

Programming model/ISA fit the task - Amdahl's LawProgramming model/ISA fit the task - Amdahl's Law
1 instruction dot product1 instruction dot product
2 instruction cross-product (thanks to swizzling and negation)2 instruction cross-product (thanks to swizzling and negation)

MUL R1, R0.zxyw, R2.yzxw ;MUL R1, R0.zxyw, R2.yzxw ;

MADD R1, R0.yzxw, R2.zxyw, -R1MADD R1, R0.yzxw, R2.zxyw, -R1

Reciprocal is better than divide for many thingsReciprocal is better than divide for many things
perspective division / normalization - one RCP and 3 MULsperspective division / normalization - one RCP and 3 MULs
Better than 3 non-pipelined divisionsBetter than 3 non-pipelined divisions

Non-orthagonal instruction setNon-orthagonal instruction set
Most common operations have similiar sub-operationsMost common operations have similiar sub-operations
Can't be slower than the last chip - legacy lighting hardwareCan't be slower than the last chip - legacy lighting hardware
Instruction set elegance - good for papers, bad for walletInstruction set elegance - good for papers, bad for wallet

Architecture is fairly concrete/exposedArchitecture is fairly concrete/exposed
Not many abstractions - listed as a design goalNot many abstractions - listed as a design goal
There might be some at the system level thoughThere might be some at the system level though

Comments on low-level Comments on low-level
ProgrammingProgramming

Programming Model - Programming Model -
View of the HardwareView of the Hardware

Vertex Shader HardwareVertex Shader Hardware

VAB (Vertex Attribute Buffer)VAB (Vertex Attribute Buffer)
All incoming data converted to floating point before arrival hereAll incoming data converted to floating point before arrival here
Input register bank initialized to (0,0,0,1)Input register bank initialized to (0,0,0,1)
VAB drains into input buffersVAB drains into input buffers

One input buffer per threadOne input buffer per thread
Input Buffers round-robin into FP processorInput Buffers round-robin into FP processor

Floating Point ProcessorFloating Point Processor
Multithreaded Vector Processor (Round Robin)Multithreaded Vector Processor (Round Robin)

indicates that MT used for hiding pipeline latencyindicates that MT used for hiding pipeline latency
Also good at hiding bad programming (no pipe scheduling)Also good at hiding bad programming (no pipe scheduling)

Non-IEEE floating point unitNon-IEEE floating point unit
2 pass Newton/Raphson for RCP/RSQ2 pass Newton/Raphson for RCP/RSQ
All input registers have fixed and equal timingAll input registers have fixed and equal timing

Seems very efficient - very little is devoted to controlSeems very efficient - very little is devoted to control

Vertex Shader HardwareVertex Shader Hardware

 RCP , RSQ
LOG, EXP, LIT

MOV, MUL, ADD,
MAD, DP3, DP4,
DST, MIN, MAX,
SLT, SGE

API Design GoalsAPI Design Goals

Target OpenGL and Direct3D - Widely available, supports easy adoptionTarget OpenGL and Direct3D - Widely available, supports easy adoption
Extensions need to smoothly blend into current APIsExtensions need to smoothly blend into current APIs
Mix and match new and old functionsMix and match new and old functions
Don't want to force radical changes onto the programmer]Don't want to force radical changes onto the programmer]

It's nice to give programmer the option to do radical thingsIt's nice to give programmer the option to do radical things
This is really great - superior things often fail because they're radicalThis is really great - superior things often fail because they're radical

Need to maintain backwards compatibilityNeed to maintain backwards compatibility
"Forward Focus" (mentioned in the beginning)"Forward Focus" (mentioned in the beginning)

Quickly changing API needs programmable hardwareQuickly changing API needs programmable hardware
Programmable hardware lessens need on fixed APIProgrammable hardware lessens need on fixed API

User defines data structures and communicationUser defines data structures and communication
Flexibility to do something really newFlexibility to do something really new
Automatic generation of vertex programs mentioned (is this done?)Automatic generation of vertex programs mentioned (is this done?)

Path to more programmability (GPU could do more than vertex processing)Path to more programmability (GPU could do more than vertex processing)
Well defined (constrained) execution environment (This was really a goal?)Well defined (constrained) execution environment (This was really a goal?)

Not unlimited registers, program lengths, memoryNot unlimited registers, program lengths, memory
This is desirable in General Purpose CPU - hide the implementationThis is desirable in General Purpose CPU - hide the implementation

Didn't want to overwhelm the programmer with too many degrees of freedomDidn't want to overwhelm the programmer with too many degrees of freedom
Good from a hardware overhead perspectiveGood from a hardware overhead perspective

OpenGL - Added a "Vertex Program Mode"OpenGL - Added a "Vertex Program Mode"
Disabled by default, enable with Disabled by default, enable with glEnable(GL_VERTEX_PROGRAM_NV)glEnable(GL_VERTEX_PROGRAM_NV)
glVertex(...)glVertex(...) or equivalent command now runs a vertex programor equivalent command now runs a vertex program
Multiple programs managed with "program objects"Multiple programs managed with "program objects"

Treated similiar to texture objects and display listsTreated similiar to texture objects and display lists
Program objects have distinct target that indicates its typeProgram objects have distinct target that indicates its type
2 targets supported2 targets supported
GL_VERTEX_PROGRAM_NVGL_VERTEX_PROGRAM_NV for for glVertex()glVertex() type programstype programs
GL_VERTEX_STATE_PROGRAM_NVGL_VERTEX_STATE_PROGRAM_NV when constants/state needs to be modifiedwhen constants/state needs to be modified

Program objects are immutable, but can be reloaded or deletedProgram objects are immutable, but can be reloaded or deleted
Generated with Generated with glGenProgramsNV()glGenProgramsNV()
Deleted with Deleted with glDeleteProgramsNV()glDeleteProgramsNV()
Loaded with Loaded with glLoadProgramNV()glLoadProgramNV()
Bind with Bind with glBindProgramNV()glBindProgramNV()

OpenGL programmingOpenGL programming

OpenGL programmingOpenGL programming

glRequestProgramsResidentNV() loads programs into GPUglRequestProgramsResidentNV() loads programs into GPU
Performance/caching hint - maybe like the C register type modifierPerformance/caching hint - maybe like the C register type modifier
Speeds up bindingSpeeds up binding

Vertex attributes can change inside or outside Vertex attributes can change inside or outside glBegin()/glEnd()glBegin()/glEnd()
glVertexAttribNV()glVertexAttribNV()used to access attribute registers by numberused to access attribute registers by number
glVertexAttributesNV()glVertexAttributesNV()specifies a scalar to a usually vector registerspecifies a scalar to a usually vector register
Can also be accessed by arrays (how isn't discussed)Can also be accessed by arrays (how isn't discussed)
Vertex Attribute Aliasing - assigns names to the attribute registersVertex Attribute Aliasing - assigns names to the attribute registers

Minor changes to add shader programs to plain OpenGL codeMinor changes to add shader programs to plain OpenGL code
Abstracts for future implementationsAbstracts for future implementations

Vertex programs are strings in OpenGL, bytecodes in Direct3DVertex programs are strings in OpenGL, bytecodes in Direct3D
Bytecodes slightly more efficient - almost insignificantBytecodes slightly more efficient - almost insignificant
Strings more readable - hopefully fewer bugsStrings more readable - hopefully fewer bugs

static const char programString[] =
"!!VP1.0"
"MOV o[HPOS], v[OPOS] ;"
"END";

// Load program into 7
glLoadProgramNV(GL_VERTEX_PROGRAM_NV, 7,

strlen(programString), programString);

// Make 7 the current vertex program
glBindProgramNV(GL_VERTEX_PROGRAM_NV, 7);

glBegin();

glVertex(blah); // Runs the "7" program with blah as input

glEnd();

OpenGL codeOpenGL code

Vertex ProgramsVertex Programs
Program Parameters (96 element memory for constants)Program Parameters (96 element memory for constants)

There's no automatic aliasing to vertex states (lights, clip planes, etc)There's no automatic aliasing to vertex states (lights, clip planes, etc)
But, there is "Matrix Tracking"But, there is "Matrix Tracking"

For both OpenGL and user matrices (modelview, projection, tex, etc)For both OpenGL and user matrices (modelview, projection, tex, etc)
Stored in a dedicated contiguous area of constant memoryStored in a dedicated contiguous area of constant memory
Can track the transform of a matrix (into constant memory 4,5,6,7):Can track the transform of a matrix (into constant memory 4,5,6,7):

 glTrackMatrix(GL_VERTEX_PROGRAM_NV, 4, GL_MODELVIEW, GL_INVERSE_TRANSPOSE_NV) glTrackMatrix(GL_VERTEX_PROGRAM_NV, 4, GL_MODELVIEW, GL_INVERSE_TRANSPOSE_NV)

Vertex program needs only 3 DP3s to convert to eye space for lightingVertex program needs only 3 DP3s to convert to eye space for lighting
Can even track a composite of the modelview and projection matricesCan even track a composite of the modelview and projection matrices

 glTrackMatrix(GL_VERTEX_PROGRAM_NV, 0, glTrackMatrix(GL_VERTEX_PROGRAM_NV, 0,
 GL_MODELVIEW_PROJECTION_NV, GL_IDENTITY_NV) GL_MODELVIEW_PROJECTION_NV, GL_IDENTITY_NV)

Vertex program now needs only 4 DP4s to convert to clip spaceVertex program now needs only 4 DP4s to convert to clip space
glProgramParameterNV*()glProgramParameterNV*() commands for constant memory setupcommands for constant memory setup
Parameter memory can't be modified inside of Parameter memory can't be modified inside of glBegin()/glEnd()glBegin()/glEnd()

Undefined results for an already running shader programUndefined results for an already running shader program
Vertex state programVertex state program

used for updating the parameter registersused for updating the parameter registers
supported by NV_vertex_programsupported by NV_vertex_program
explicitly executed, unlike regular vertex programexplicitly executed, unlike regular vertex program

FinFin

Thanks!Thanks!

BackupBackup

Backup SlidesBackup Slides

Discussion QuestionsDiscussion Questions

Paper 2 finishes by stating their future work will be with increased programmability of Paper 2 finishes by stating their future work will be with increased programmability of
geometry processing, programmable fragment processing, and shading languages that geometry processing, programmable fragment processing, and shading languages that
exploit GPU programmability - opinions?exploit GPU programmability - opinions?
Would adding control flow to Vertex Shader be a good idea? (Radeon has it)Would adding control flow to Vertex Shader be a good idea? (Radeon has it)
Lack of hardware details is frustrating - but that's how it goesLack of hardware details is frustrating - but that's how it goes
Ideal application domain for multithreading/multiprocessingIdeal application domain for multithreading/multiprocessing

Enough threads to exeuteEnough threads to exeute
Effective at hiding pipe latencyEffective at hiding pipe latency
But - what about memory? But - what about memory?

Wouldn't be surprised to see more of this in the futureWouldn't be surprised to see more of this in the future
Prefetching is probably pretty good in these architecturesPrefetching is probably pretty good in these architectures
Some memory accesses are still non-deterministic - MT could helpSome memory accesses are still non-deterministic - MT could help

GPUs seem to have much lower frequencies than CPUs - why is that?GPUs seem to have much lower frequencies than CPUs - why is that?
?? Power/packaging/cost, latch overhead, multithreading, short pipes, complex ops?? Power/packaging/cost, latch overhead, multithreading, short pipes, complex ops

Guess as to Flap's Guess as to Flap's
Memory TesselationMemory Tesselation

Tesselation allows row and column Tesselation allows row and column
accessaccess
Easy to do with bit manipulationEasy to do with bit manipulation
StraightforwardStraightforward Address Mapping: Address Mapping:

One Possible Tesselated Mapping:One Possible Tesselated Mapping:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 43 4 1

1000 1016 1032 1048 1064

1 2 3 4 12 3 4 1 23 4 1 2 34 1

1000 1016 1032 1048 1064

2

A B C D A B C D A B C D A B C DA B C DA B C D AC D

A B C D A B C D A B C D A B C DA B C DA B C D AC D

3

