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Speaker backgrounds

• William Mark – Univ. of Texas at Austin
– Research area: Real-time 3D graphics systems
– Formerly at NVIDIA; led design of Cg language

• Henry Moreton - NVIDIA
– Senior architect in NVIDIA architecture group
– Formerly at SGI
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Dedicated graphics chip in modern PCs

CPU

Memory

Input/Output Glue Chip
(“South Bridge”)

Graphics
Processor

Memory Controller Chip
(“North Bridge”)

Memory

Memory

Memory

125 Million
transistors

222 Million
transistors

(Pentium4 Prescott,

.09u 1MB L2$)

(GeForce 6800,

.13u)
Disk, Keyboard, etc.
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CPU vs. Graphics Peak Performance

Pentium 4
1.06 GHz FSB

ATI Radeon
X800

Clock rate 3.8 GHz 0.5 GHz

Peak GFLOPS 15.2 63.7
(fragment unit)

Memory BW 8.4 GB/sec 32 GB/sec

GFLOPS source: GFLOPS source: FatahalianFatahalian et al, GH2004et al, GH2004
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Highly parallel, single chip architecture

22   Programmable Cores
152 FP32 mult/add units
22   rcp/sqrt units
32   GB/sec memory BW

GeForce 6800GeForce 6800

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull
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Task is computationally intensive

1 million pixels
@ 60 frames/sec:

60 million
pixels/sec.

Lots of work
for each pixel.

Half Life 2
Valve Software
Nov. 2004
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HW is programmable (for some units)

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

…
edgeMask = (dot(e, n) >  0.4) ? 1 : 0;
lpos = float3(3,3,3);
l = normalize(lpos - In.TEX7.xyz);
h = normalize(l + e);
…
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“Mainstream” architects can learn from GPUs

• Parallelism is becoming more important
– Peak performance vs. FLOPS/$$$ or FLOPS/Watt

• GPUs are first highly-parallel processors in PCs
– And now they’re programmable

• Graphics is major driver of PC performance
– Large market
– Performance is not yet “good enough”
– Innovative and talented software developers

• Willing to experiment
• Willing to endure (some) pain to get performance
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Tutorial outline

• Fundamentals of 3D graphics [Bill]
• Z-buffer graphics pipeline [Bill]
• NV40 case study [Henry]
• More details of modern architectures [Bill]
• Discussion and future trends [Bill]

Please interrupt at any time to ask questions.
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Fundamentals of 3D Graphics
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Motivation for learning graphics fundamentals

• Q:  I’m an architect.  I do hardware, not algorithms.
Can’t we just skip ahead to the case study?

A:   Not really.  You can’t understand 3D graphics
architectures without understanding 3D
graphics algorithms.

• Q:  Could I design my new Acme FlexiGPU
architecture by optimizing for current
graphics applications/traces/benchmarks?

A: No, not if you want your architecture to
be relevant when it’s done.



3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 12

Graphics applications and HW co-evolve

Architecture strongly influences applications

Graphics
Architectures

Graphics
Applications (e.g. games)

Goal: Best 60 Hz
image for $100 of
silicon
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A previous change

Source: John Poulton
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The rendering problem

• Given:
– 3D world

(objects and materials)
– Light locations
– A viewpoint

• Compute:
– 2D image seen from the 

viewpoint
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The computational questions in rendering

• Where are moving objects located right now?
• What objects are visible…

– From the viewpoint?
– From the lights?  (shadowed vs. non-shadowed)
– From other (reflective) surfaces?

• How do objects reflect light?
– What color?  What intensity?
– How does reflectivity vary with direction?

• How much light reaches…
– Various surfaces in the scene?
– The viewpoint, from various directions?
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The rendering equation

Source: Pat Source: Pat HanrahanHanrahan

All practical real-time systems make major
approximations to this equation in order to solve it.
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Surface geometry and properties
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Geometry is modeled using triangle meshes

Image: Hughes Hoppe, Microsoft ResearchImage: Hughes Hoppe, Microsoft Research

AA
BB

11

22 33

44

Vertex ArrayVertex Array
(x1, y1, z1)(x1, y1, z1)
(x2, y2, z2)(x2, y2, z2)
……

Index ArrayIndex Array
V1, V2, V4 V1, V2, V4 –– represents Triangle Arepresents Triangle A
V4, V2, V3 V4, V2, V3 –– represents Triangle Brepresents Triangle B

Vertices are only stored once.Vertices are only stored once.
Triangles point to their vertices.Triangles point to their vertices.
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Store a surface-normal vector at each vertex

• Allows computation
of “true” normal vector
at any point on triangle
– Triangle is just an approx

to curved surface

• Normal vectors needed to 
compute surface/light 
interaction (shading).

Image: ATI TechnologiesImage: ATI Technologies

((NxNx, , NyNy, , NzNz))

((NxNx, , NyNy, , NzNz))

((NxNx, , NyNy, , NzNz))
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Triangles sometimes subdivided by GPU

Image: ATI TechnologiesImage: ATI Technologies

GPU tessellationGPU tessellation
will becomewill become
more commonmore common
in next few years.in next few years.

-- ReducesReduces
CPUCPU-->GPU>GPU
BandwidthBandwidth

-- TesselationTesselation
can becan be
adaptiveadaptive
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Texture mapping – apply image to geometry

Example #1 Example #1 –– Use simple formula for mapping image to geometryUse simple formula for mapping image to geometry
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Texture mapping using texture coordinates

Example #2 Example #2 –– Use Use texture coordinatestexture coordinates to map image to geometryto map image to geometry

++

00 11
00

11

uu

vv

(0.5, 0.7)(0.5, 0.7)

==

(0.6,0.3)(0.6,0.3)

(0, 0)(0, 0)
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Texture aliasing problem

Simple texture samplingSimple texture sampling

Better: use MIPBetter: use MIP--mappingmapping
(a form of filtered sampling)(a form of filtered sampling)
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MIP-maps

• For a texture of 2n x 2n texels, pre-compute n-1  
textures, each at ½ the resolution of previous:

• This multiresolution texture is called a MIP-map

Original Texture Lower Resolution Versions
Figure:Figure:
David David LuebkeLuebke
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At runtime, for each fragment:
For now, think of fragment as For now, think of fragment as ““potential pixelpotential pixel””

• Interpolate texture coordinates from vertices
• Compute needed MIP-map level

– Use “derivatives” of texture coordinates
– Actual implementations group fragments into

groups of 4, and compute discrete differences.
• Retrieve eight texture samples

– 4 from “bigger” image, 4 from “smaller” image
– Small cache captures local reuse; but BW intensive

• Linearly interpolate the eight samples
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Anisotropic texture filtering

Figure: Pharr and Humphreys, Physically Based RenderingFigure: Pharr and Humphreys, Physically Based Rendering

• Uses more than 8 samples
when surface is angled 
with respect to viewpoint

• Gradually replacing
simple MIP-maping as
standard texture algorithm

• Architectural implications:
– Uses more memory BW
– Uses more computation
– Variable-iteration loop

at each fragment – texturing
is no longer “SIMD”.
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Per-fragment texturing cost in Z-buffer system

Source: Pat Source: Pat HanrahanHanrahan and Kurt and Kurt AkeleyAkeley

For simple MIPFor simple MIP--mapping:mapping:

• Very computationally intensive
– 2004 GPU’s can sustain 8 mipmapped texture lookups per cycle

• 16-bit arithmetic is used for filtering computations
• Still implemented primarily with dedicated HW
• Memory reads are tricky – more on this later
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Where texture HW lives in Z-buffer pipeline

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

One texture unitOne texture unit
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Surface/light interaction (shading)

• Compute light
intensity/color leaving
surface in a particular 
direction.

• Given:
– Incoming light intensity

(often expressed using
light locations)

– Surface position
– Surface normal vector
– Surface properties

??

P = point on surfaceP = point on surface
N = surfaceN = surface--normal vectornormal vector
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Shading combines two computations

• What are the surface properties at this point?
– e.g. look up surface color in a texture map

• How does incoming light interact with surface?
– e.g. what is intensity of reflected light from Light #2?
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Shading dominates rendering cost

• ~50% of die area devoted to texturing/shading
– And this fraction is increasing
– May eventually exceed 90%, following batch rendering
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A simple shading computation

• Phong lighting model at every fragment:

⋅ ⋅ s
e a a d + s +

nI = k + k I + k I + k I( ) ( )N L V R

Also, must first interpolate N and reAlso, must first interpolate N and re--normalize it.normalize it.

Operations:Operations:
-- 1/x1/x
-- 1/sqrt(x)1/sqrt(x)
-- x^yx^y
-- clampclamp
-- lots of add, multiplylots of add, multiply

All of this at ~1 billion fragments/secAll of this at ~1 billion fragments/sec
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Variety in materials programmable shaders

• Real world has infinite variety of materials
– Need programmable shaders to describe them

• Example fragment program in Cg/HLSL:

void normalmapped(float2 void normalmapped(float2 normalMapTexCoordnormalMapTexCoord : TEXCOORD0,: TEXCOORD0,
……

out float4 color : COLOR,out float4 color : COLOR,
uniform float ambient,uniform float ambient,
……))

{{
float3 float3 normalTexnormalTex, , ……;;
normalTexnormalTex = tex2D(normalMap, = tex2D(normalMap, normalMapTexCoord).xyznormalMapTexCoord).xyz;;
……
diffuse = diffuse = saturate(dot(normalsaturate(dot(normal, , normLightDirnormLightDir););
……
color = color = KdKd * (ambient + diffuse ) +* (ambient + diffuse ) +

Ks * Ks * pow(specularpow(specular, , specularExponentspecularExponent;;
}}
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Programming model makes parallelism easy

• Program is re-run for every fragment (or vertex)
• Perfect parallelism:

– Program cannot communicate with other fragments
– No persistent state (each fragment is independent)
– In most respects, a “stream programming” model

• Each fragment gets one input record and one output record
• Fragment program = “stream kernel” or “filter”

Fragment #1Fragment #1
Fragment #2Fragment #2

……
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Where shader programs execute

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

Fragment programFragment program

Vertex programVertex program
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Animation:
Objects that move and deform
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Two main questions:

• How do we describe object movement?

• How do we describe object deformation?

translatetranslate

deformdeform
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Translation and rotation – the “math” way

Translation vectorTranslation vector

3x3 rotation matrix3x3 rotation matrix

TranslationTranslation

new old

x

y

z

x T x
y T y
z T z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

RotationRotation

new old

xx xy xz

yx yy yz

zx zy zz

x R R R x
y R R R y
z R R R z

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
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Translation and rotation – The “graphics” way

0 0 0 1new old

xx xy xz x

yx yy yz y

zx zy zz z

x R R R T x
y R R R T y
z R R R T z
w w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

This is why GPUsThis is why GPUs
(and SSE2) support(and SSE2) support
44--vector shortvector short--SIMDSIMD
operations.operations.

Dot product and MACDot product and MAC
are criticalare critical…

4x4 rotation/translation/etc. matrix4x4 rotation/translation/etc. matrix

…
Implicit divisionImplicit division

Division is eventually performed explicitly.Division is eventually performed explicitly.
But HW should just support reciprocal.But HW should just support reciprocal.

1

final new

x x
y y

w
z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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Scene graph describes entire scene

• Scene graph is a data structure:
– Includes objects and 4x4 xforms.
– Managed by CPU.
– Updated as objects move.

• CPU traverses scene graph 
every frame:
– Feeds 4x4 xforms, shaders to GPU
– Feeds triangles to GPU
– May skip parts of scene known

to be hidden from view.

• Games are often CPU-limited! Figure: Figure: gamedev.netgamedev.net
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“Skinning” – blending multiple xform matrices

• Used for non-rigid objects, like humans
• One xform matrix for each major bone

– E.g. upper arm, lower arm
• Vertices near bone boundaries use two or more

matrices.
– E.g. near elbow, shoulder.

Figure: Figure: nvidia.comnvidia.com
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Skinning needs variable-iteration loop

for (for (intint i = 0; i < i = 0; i < numBonesnumBones; i++); i++)
{{

// transform the offset by bone i// transform the offset by bone i
transformedPositiontransformedPosition = = transformedPositiontransformedPosition + + curWeight.xcurWeight.x **

vec4((boneMatrices[ivec4((boneMatrices[int(curIndex.x)] *nt(curIndex.x)] *
position).xyzposition).xyz, 1.0);, 1.0);

// transform normal by bone i// transform normal by bone i
transformedNormaltransformedNormal = = transformedNormaltransformedNormal + + curWeight.xcurWeight.x **

(mat3(boneMatrices[in(mat3(boneMatrices[int(curIndex.x)]) * t(curIndex.x)]) * normal).xyznormal).xyz;;

curIndexcurIndex = = curIndex.yzwxcurIndex.yzwx;;
curWeightcurWeight = = curWeight.yzwxcurWeight.yzwx;;

}}

gl_Positiongl_Position = = gl_ModelViewProjectionMatrixgl_ModelViewProjectionMatrix * * transformedPositiontransformedPosition;;
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Visibility and Z-buffers
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Hidden surface problem

• At each pixel,
which surface is closest to the viewpoint?
– We want the pixel to be the color of that surface point

• Many different algorithms for this task:
– “Z-buffer” is used in all current GPU’s
– But augmented with preprocessing on CPU
– Other solutions used in past (and future?)

• More general version of this problem:
– Which surface, if any, comes between points A and B?
– Needed for shadows, global illumination, …
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The Z-buffer algorithm

Figure: Figure: ProsiseProsise, How Computer Graphics Work, How Computer Graphics Work
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Z-buffer algorithm uses “brute force”

for each pixel (i,j) do
Z-buffer [i,j] ← FAR
Framebuffer[i,j] ← <background color>

end for

for each polygon A do
for each pixel in A do

Compute depth z and shade s of A at (i,j)
if z > Z-buffer [i,j] then

Z-buffer [i,j] ← z
Framebuffer[i,j] ← s

end if
end for

end for

-- Touches eachTouches each
polygon exactlypolygon exactly
once.once.

-- Application canApplication can
choose polygonchoose polygon
order.order.

-- But:But:
NearlyNearly--randomrandom
accesses toaccesses to
frambufferframbuffer..
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Modern Z-buffer graphics pipeline

Vertex
Processor

Fragment
Processor

Triangle
Assembly &
Rasterization

Framebuffer
Operations

Fram
ebuffer

Textures

Texture
Filtering &

Decompression

Z compare (R/M/W),Z compare (R/M/W),
RGB blend (R/M/W)RGB blend (R/M/W)

= Programmable

= Not programmable – hardwired algorithms
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Why is graphics hardware fast?

• Specialization
– Gradually becoming less important (esp. for FLOPS)
– But still matters a lot (esp. for memory subsystems)

• Parallelization
– Rapidly becoming more important
– Two kinds:

• Task parallelism – pipeline of operations
• Data parallelism
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Programmable units in GPUs process data streams

uniform
values

• The programmable unit executes a computational kernel (i.e. 
vertex program)  for each input element (i.e. vertex)

• Streams consist of ordered elements
• Fragment processor can read from texture memory

Stream
Processor

Input stream
(e.g. from vertex array) Output stream

V1  V2  … Vn V1  V2  … Vn
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Stream model supports data parallelism

Stream
Unit #1

V1  V2  … Vn

V1  V2  … Vn

Stream
Unit #3

Stream
Unit #2

• Communication between elements is prohibited
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Lots of data parallelism – at most stages

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

[hardwired][hardwired]

[program][program]

[program[program
(except(except
texture)]texture)]

Z compareZ compare
[hardwired][hardwired]
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A bane of parallelism: Order matters!

• Current APIs require in-order triangle completion
– Observable if Z compare is a tie
– Or when old triangle is blended with new one

• Requirement reduces to:
– In-order completion of fragments from different triangles 

that map to the same pixel.
– Non-overlapping fragments can (and do)

complete out of order.
• Places major constraints on possible architectures
• Serialization points exist at command processor

and rasterizer.
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But why not eliminate ordering requirement?

• Several answers:
– Ordering is useful, particularly for blending
– Ordering requirement defines results precisely

• Without it, could have race conditions
• Different hardware (or even clock rates) could produce different

results from same program!
• Rapid HW evolution requires precise programming model

• This is a fundamental issue in parallel architecture
– Could the GPU solution be generalized?
– Not clear if current GPU approach can be sustained as

GPU programming models become more flexible
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Multisampling – decouple visibility & shading

• Goal: reduce “jaggies” at object edges

• Solution: Compare Z values at several points within pixel
– Color only computed once per pixel (per triangle)
– Color and Z are stored 4 times (but possibly compressed!)

Figure: Kurt Figure: Kurt AkeleyAkeley

One pixel:One pixel:

Z sample locationsZ sample locations
Color sample locationColor sample location
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More difficult visibility problems
(not just from eyepoint)
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Shadows: Visibility from light

EyepointEyepoint visibilityvisibility

Light visibilityLight visibility
(which surfaces(which surfaces
are shadowed?)are shadowed?)

??

Any surface that is not visible from the light is in shadow.Any surface that is not visible from the light is in shadow.

Simplest case: Treat light as a single point (Simplest case: Treat light as a single point (““hard shadowshard shadows””))



3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 57

Solution #1 for hard shadows: Shadow maps

Shadow map =Shadow map =
Auxiliary ZAuxiliary Z--buffer usingbuffer using
light as viewpointlight as viewpoint

Comments:Comments:
-- Conventional shadow mapsConventional shadow maps

prone to sampling artifacts.prone to sampling artifacts.
-- Current games do not useCurrent games do not use

shadow mapsshadow maps
-- Enhanced variants likelyEnhanced variants likely

to fix these problems overto fix these problems over
next few years.next few years.
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Solution #2 for hard shadows: Shadow volumes

-- Uses Uses ““stencil bufferstencil buffer””
(counter at each pixel)(counter at each pixel)

-- Renders many largeRenders many large
polygons.polygons.

-- Demands highDemands high
stencil buffer bandwidthstencil buffer bandwidth

-- Used in DOOM 3 gameUsed in DOOM 3 game
-- But algorithm likely toBut algorithm likely to
be phased out in nearbe phased out in near
future.future.

Source: McGuire Source: McGuire et al.et al.: Fast, Practical, and Robust Shadows, 2003: Fast, Practical, and Robust Shadows, 2003
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Shadow algorithms are in flux

• Realistic shadows are new in games (~1 year)
• Current approaches are inadequate

– Issues with performance and/or image quality
• Wide variety of new techniques under development
• Likely to be major driver of new HW capabilities
• Interaction between algorithms and hardware

is especially complex

My opinion:
– Representative of future challenges for GPU’s.
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Data Types
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Data type (precision) summary

Old New

Fragment processor fixed10-12 float32

Framebuffer color,
blend unit

fixed8 fixed8, float16

Textures,
texture filter

fixed8 fixed8, float16

Vertex processor
(positions)

float32 float32

Rasterizer Various float Various float

Increasing precision driven by:Increasing precision driven by:
-- Programmable shading Programmable shading ---- [fragment processor][fragment processor]
-- HighHigh--dynamicdynamic--range rendering and range rendering and framebuffersframebuffers ---- [texture, [texture, framebufferframebuffer, blend], blend]
-- Global illumination (mostly for future) Global illumination (mostly for future) ---- [fragment processor, [fragment processor, framebufferframebuffer, textures], textures]
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Henry Moreton – GPU case study
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[35 Missing Slides]

We are unfortunately unable to put Henry We are unfortunately unable to put Henry MoretonMoreton’’ss portion ofportion of
the presentation (35 slides in total) online.the presentation (35 slides in total) online.
Please contact Henry directly for any questions about this mattePlease contact Henry directly for any questions about this matter.r.
His email is <His email is <hmoretonhmoreton--atat--nvidianvidia--dotdot--comcom>.>.
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Bill Mark - More architectural details
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Massive multithreading can hide memory latency
(a.k.a. (a.k.a. ““Never stall on a cache missNever stall on a cache miss””))

• Consider texture mapping:

• Each fragment is a thread
• Context switch on texture fetch

– Must hide memory latency – cache miss rate > 10%
• Need 100+ threads per fragment processor!

– Fortunately, thread context is small (<< 100 bytes, typ.)

for each fragmentfor each fragment {{
compute_texture_addressescompute_texture_addresses();();
texelstexels = = memory_readmemory_read(texaddress1, 2, 3, 4, 5, 6, 7, 8);(texaddress1, 2, 3, 4, 5, 6, 7, 8);
compute_color(texelscompute_color(texels););

}}
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Texture prefetching architecture

Figure: Pat Figure: Pat HanrahanHanrahan and Kurt and Kurt AkeleyAkeley..
Reference: Reference: IgheyIghey et alet al, , PrefetchingPrefetching in a Texture Cache Architecturein a Texture Cache Architecture
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Prefetching with a texture cache

Figure: Pat Figure: Pat HanrahanHanrahan and Kurt and Kurt AkeleyAkeley..

-- Keeps fragments in order.Keeps fragments in order.
-- Basic idea generalizesBasic idea generalizes
to programmable fragmentto programmable fragment
processors.processors.

-- Various enhancements andVarious enhancements and
modifications can be made.modifications can be made.
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Multithreaded prefetch also used for framebuffer

Figure: W. Park et al,Figure: W. Park et al,
An Effective Pixel Rasterization Pipeline ArchitectuAn Effective Pixel Rasterization Pipeline Architecture for 3D Rendering Processors, 2003re for 3D Rendering Processors, 2003

Also, see NVIDIA and ATI patents, e.g. US #6,734,861, filed Oct Also, see NVIDIA and ATI patents, e.g. US #6,734,861, filed Oct 2000.2000.
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Framebuffer has R/W hazards

• Semantics say:
– Preserve ordering
– Atomic R/M/W for Z compare

• In practice:
– Semantics only matter for two fragments at same pixel
– Detect this and special case it

• Conceptually, 1 million locks (one for each pixel)
• Hash instead!

• All of this is hardwired
– Needs very high throughput
– One of the big “tar pits” for general purpose hardware
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Maximize cache hit rates with 2D tiling

• Framebuffer and textures organized into tiles
– Allows capture of 2D spatial coherence by caches

• Rasterizer generates fragments in tile order
• All of this is hardwired

Reference:Reference:
McCormack et al,McCormack et al,
Neon: a singleNeon: a single--chip 3D workstation graphics accelerator, chip 3D workstation graphics accelerator, 
19981998
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Other important optimizations

• Early fragment kill
– Perform Z and/or stencil test before shading, texturing
– Be careful, since semantically it occurs afterward

• Hierarchical (low-res) Z/stencil buffers
– Keep low-res buffers on-chip
– Improves performance of early-discard tests
– Annoying interactions with other features

• E.g. Turn this stuff off if fragment shader can modify Z
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Miscellaneous
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Yield tricks

• Top-of-the-line HW has 16 fragment units
– But it’s quite hard to find these parts

• Almost-top HW has 12 fragment units
– Much easier to find these parts

• Why might that be?
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General purpose computation on GPUs

• Use fragment processors as stream processors
• Specialized languages for this purpose

– Brook for GPU’s [Buck et al., 2003]
– Sh [McCool et al, 2004]

• Applications include:
– Image processing
– Some BLAS routines (single-precision only)
– Ray casting
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Full stream proc     GPU

Current GPU’s
(efficient Z-buffer rendering,
with programmable shading)

Full stream
programming

(e.g. Imagine processor)

GPU stream
programming

- Tagged caches
- R/M/W blend,Z
- etc.

- Scatter to memory
- Conditional kernel outputs
- Efficient reduction
- etc.

Fortunately, many of the more general stream programming features that today’s
GPU’s lack could be added with minimal impact on cost and rendering performance
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Historical trends

Year NVIDIA
Product

Mtri/
sec

Mfrag/
sec (*)

BW
GB/sec

Clk
MHz

Trnst
cnt (M)

Proc
(um)

100 4

9

25

57
63

121

222

175

.35

.22

.18

.18

.15

.13

166

200
300

500

425 .13

1998 Riva ZX 3 100 1.6

1999 Riva TNT2 9 350 3.2

2000 GeForce2 GTS 25 664 5.3

2001 GeForce3 30 800 7.4
2002 GeForce4 Ti 4600 60 1200 10.4

2003 GeForce FX 167 2000 16.0

2004 GeForce 6800 Ultra 170 6800 35.2

• Yearly growth rates well above CPU rate of ~1.5
– While adding substantial new functionality!

• But growth rates for BW & die area probably unsustainable

Source: Mark Kilgard, NVIDIA* Fragment fill rate for 1 texture.* Fragment fill rate for 1 texture.
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Recap
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Why is graphics hardware fast?

• Specialization
– Serial bottlenecks such as rasterization
– Memory access, caching, compression, addressing
– Ordering of parallel memory writes
– Shepherding of parallelism, data flows, communication
– Smart work avoidance: early Z tests, etc.
– Texture filtering

• Parallelism
– Multithreaded vertex processor
– Multithreaded fragment/texture processor
– “Multithreaded” ROP unit (Z test, etc)
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Advantages of Z-buffer algorithm

• Reasonable computational cost
• Each polygon touched just once

– Application can feed polygons in any order.
– Works well for moving objects.

• Producer-consumer locality within HW pipeline
• Good spatial locality of memory accesses

– Texture
– Framebuffer

• Most parts of algorithm easily parallelized
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The “tar pits” for conventional architects

• GPUs must optimize for throughput, not latency
– We see this trend emerging elsewhere, too.

• 3D graphics computations != signal processing
– Surprisingly irregular and complicated
– Especially with optimizations like compression

• Functionality changes rapidly
– Big mistake to design for old benchmarks
– Challenging for academics to keep up

• Specialized HW still critical to Z-buffer performance
• Architects must understand the application

– Perhaps generally true for parallel systems?
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The Future
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Near term (next two years)

• Additional pipeline stages become programmable
– E.g. Geometry subdivision/tesselation

• Additional flexibility in data flow, communication
– Easier to implement innovative graphics algorithms
– Easier to use GPU as “general purpose”

parallel processor.
• First real successes for using GPU as

“general purpose” processor
– But limitations of stream programming model

will also become apparent.
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Longer term

Sequential

Parallel

< --------------------------->

CPU

GPU ?

Specialized  < --------- > General
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Forces driving long-term evolution

• Desire to accelerate other computations
– Collision detection and response, AI, etc.
– Scene management

• Desire for more realistic images
– Better shadows, indirect illumination, antialiasing, etc.
– Z buffer has trouble with needed visibility computations
– Possibilities include:

• Enhancements to Z buffer
• Raycasting visibility algorithms

• Work smarter, not harder
– Trend away from brute-force, one-size-fits-all algorithms
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Long-term predictions

• Graphics algorithms continue to evolve rapidly
– End of Z-buffer as we know it

• Graphics is major driver of single-chip parallelism
– Return to “software rendering”
– Two parallel programming models: Streams and CSP

• One chip combines “CPU” and “GPU”
– Fine grained throughput-optimized cores
– Coarse grained latency-optimized cores
– Specialized HW for certain tasks
– Who makes it?
– What are details of its architecture?
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Game consoles as innovation platform

• Clean slate design
– Minimal need for backward compatibility

• One company controls entire system design
– Graphics processor
– CPU
– APIs and programming languages
– Operating system
– Application software

• But economics still discourage radical designs
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Open research questions

• How should real-time graphics algorithms
and architectures co-evolve?
– What new/enhanced algorithms?  What HW?

• Specialized vs. General HW?
– What is the right balance?
– Is semi-specialized HW useful? (e.g. R/M/W)

• What programming model for parallel units?
– Stream, CSP, both, other?

• What granularity of parallel units?
– Lots of little ones vs. a few big ones vs. hybrids

• Can HW for graphics also accelerate other apps?
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The End

Questions?
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