
3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 1

Real-Time 3D Graphics Architecture

William R. Mark – University of Texas at Austin
Henry Moreton – NVIDIA

Micro-37 Conference Tutorial
Dec. 4, 2004

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 2

Speaker backgrounds

• William Mark – Univ. of Texas at Austin
– Research area: Real-time 3D graphics systems
– Formerly at NVIDIA; led design of Cg language

• Henry Moreton - NVIDIA
– Senior architect in NVIDIA architecture group
– Formerly at SGI

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 3

Dedicated graphics chip in modern PCs

CPU

Memory

Input/Output Glue Chip
(“South Bridge”)

Graphics
Processor

Memory Controller Chip
(“North Bridge”)

Memory

Memory

Memory

125 Million
transistors

222 Million
transistors

(Pentium4 Prescott,

.09u 1MB L2$)

(GeForce 6800,

.13u)
Disk, Keyboard, etc.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 4

CPU vs. Graphics Peak Performance

Pentium 4
1.06 GHz FSB

ATI Radeon
X800

Clock rate 3.8 GHz 0.5 GHz

Peak GFLOPS 15.2 63.7
(fragment unit)

Memory BW 8.4 GB/sec 32 GB/sec

GFLOPS source: GFLOPS source: FatahalianFatahalian et al, GH2004et al, GH2004

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 5

Highly parallel, single chip architecture

22 Programmable Cores
152 FP32 mult/add units
22 rcp/sqrt units
32 GB/sec memory BW

GeForce 6800GeForce 6800

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 6

Task is computationally intensive

1 million pixels
@ 60 frames/sec:

60 million
pixels/sec.

Lots of work
for each pixel.

Half Life 2
Valve Software
Nov. 2004

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 7

HW is programmable (for some units)

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

…
edgeMask = (dot(e, n) > 0.4) ? 1 : 0;
lpos = float3(3,3,3);
l = normalize(lpos - In.TEX7.xyz);
h = normalize(l + e);
…

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 8

“Mainstream” architects can learn from GPUs

• Parallelism is becoming more important
– Peak performance vs. FLOPS/$$$ or FLOPS/Watt

• GPUs are first highly-parallel processors in PCs
– And now they’re programmable

• Graphics is major driver of PC performance
– Large market
– Performance is not yet “good enough”
– Innovative and talented software developers

• Willing to experiment
• Willing to endure (some) pain to get performance

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 9

Tutorial outline

• Fundamentals of 3D graphics [Bill]
• Z-buffer graphics pipeline [Bill]
• NV40 case study [Henry]
• More details of modern architectures [Bill]
• Discussion and future trends [Bill]

Please interrupt at any time to ask questions.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 10

Fundamentals of 3D Graphics

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 11

Motivation for learning graphics fundamentals

• Q: I’m an architect. I do hardware, not algorithms.
Can’t we just skip ahead to the case study?

A: Not really. You can’t understand 3D graphics
architectures without understanding 3D
graphics algorithms.

• Q: Could I design my new Acme FlexiGPU
architecture by optimizing for current
graphics applications/traces/benchmarks?

A: No, not if you want your architecture to
be relevant when it’s done.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 12

Graphics applications and HW co-evolve

Architecture strongly influences applications

Graphics
Architectures

Graphics
Applications (e.g. games)

Goal: Best 60 Hz
image for $100 of
silicon

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 13

A previous change

Source: John Poulton

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 14

The rendering problem

• Given:
– 3D world

(objects and materials)
– Light locations
– A viewpoint

• Compute:
– 2D image seen from the

viewpoint

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 15

The computational questions in rendering

• Where are moving objects located right now?
• What objects are visible…

– From the viewpoint?
– From the lights? (shadowed vs. non-shadowed)
– From other (reflective) surfaces?

• How do objects reflect light?
– What color? What intensity?
– How does reflectivity vary with direction?

• How much light reaches…
– Various surfaces in the scene?
– The viewpoint, from various directions?

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 16

The rendering equation

Source: Pat Source: Pat HanrahanHanrahan

All practical real-time systems make major
approximations to this equation in order to solve it.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 17

Surface geometry and properties

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 18

Geometry is modeled using triangle meshes

Image: Hughes Hoppe, Microsoft ResearchImage: Hughes Hoppe, Microsoft Research

AA
BB

11

22 33

44

Vertex ArrayVertex Array
(x1, y1, z1)(x1, y1, z1)
(x2, y2, z2)(x2, y2, z2)
……

Index ArrayIndex Array
V1, V2, V4 V1, V2, V4 –– represents Triangle Arepresents Triangle A
V4, V2, V3 V4, V2, V3 –– represents Triangle Brepresents Triangle B

Vertices are only stored once.Vertices are only stored once.
Triangles point to their vertices.Triangles point to their vertices.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 19

Store a surface-normal vector at each vertex

• Allows computation
of “true” normal vector
at any point on triangle
– Triangle is just an approx

to curved surface

• Normal vectors needed to
compute surface/light
interaction (shading).

Image: ATI TechnologiesImage: ATI Technologies

((NxNx, , NyNy, , NzNz))

((NxNx, , NyNy, , NzNz))

((NxNx, , NyNy, , NzNz))

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 20

Triangles sometimes subdivided by GPU

Image: ATI TechnologiesImage: ATI Technologies

GPU tessellationGPU tessellation
will becomewill become
more commonmore common
in next few years.in next few years.

-- ReducesReduces
CPUCPU-->GPU>GPU
BandwidthBandwidth

-- TesselationTesselation
can becan be
adaptiveadaptive

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 21

Texture mapping – apply image to geometry

Example #1 Example #1 –– Use simple formula for mapping image to geometryUse simple formula for mapping image to geometry

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 22

Texture mapping using texture coordinates

Example #2 Example #2 –– Use Use texture coordinatestexture coordinates to map image to geometryto map image to geometry

++

00 11
00

11

uu

vv

(0.5, 0.7)(0.5, 0.7)

==

(0.6,0.3)(0.6,0.3)

(0, 0)(0, 0)

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 23

Texture aliasing problem

Simple texture samplingSimple texture sampling

Better: use MIPBetter: use MIP--mappingmapping
(a form of filtered sampling)(a form of filtered sampling)

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 24

MIP-maps

• For a texture of 2n x 2n texels, pre-compute n-1
textures, each at ½ the resolution of previous:

• This multiresolution texture is called a MIP-map

Original Texture Lower Resolution Versions
Figure:Figure:
David David LuebkeLuebke

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 25

At runtime, for each fragment:
For now, think of fragment as For now, think of fragment as ““potential pixelpotential pixel””

• Interpolate texture coordinates from vertices
• Compute needed MIP-map level

– Use “derivatives” of texture coordinates
– Actual implementations group fragments into

groups of 4, and compute discrete differences.
• Retrieve eight texture samples

– 4 from “bigger” image, 4 from “smaller” image
– Small cache captures local reuse; but BW intensive

• Linearly interpolate the eight samples

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 26

Anisotropic texture filtering

Figure: Pharr and Humphreys, Physically Based RenderingFigure: Pharr and Humphreys, Physically Based Rendering

• Uses more than 8 samples
when surface is angled
with respect to viewpoint

• Gradually replacing
simple MIP-maping as
standard texture algorithm

• Architectural implications:
– Uses more memory BW
– Uses more computation
– Variable-iteration loop

at each fragment – texturing
is no longer “SIMD”.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 27

Per-fragment texturing cost in Z-buffer system

Source: Pat Source: Pat HanrahanHanrahan and Kurt and Kurt AkeleyAkeley

For simple MIPFor simple MIP--mapping:mapping:

• Very computationally intensive
– 2004 GPU’s can sustain 8 mipmapped texture lookups per cycle

• 16-bit arithmetic is used for filtering computations
• Still implemented primarily with dedicated HW
• Memory reads are tricky – more on this later

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 28

Where texture HW lives in Z-buffer pipeline

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

One texture unitOne texture unit

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 29

Surface/light interaction (shading)

• Compute light
intensity/color leaving
surface in a particular
direction.

• Given:
– Incoming light intensity

(often expressed using
light locations)

– Surface position
– Surface normal vector
– Surface properties

??

P = point on surfaceP = point on surface
N = surfaceN = surface--normal vectornormal vector

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 30

Shading combines two computations

• What are the surface properties at this point?
– e.g. look up surface color in a texture map

• How does incoming light interact with surface?
– e.g. what is intensity of reflected light from Light #2?

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 31

Shading dominates rendering cost

• ~50% of die area devoted to texturing/shading
– And this fraction is increasing
– May eventually exceed 90%, following batch rendering

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 32

A simple shading computation

• Phong lighting model at every fragment:

⋅ ⋅ s
e a a d + s +

nI = k + k I + k I + k I() ()N L V R

Also, must first interpolate N and reAlso, must first interpolate N and re--normalize it.normalize it.

Operations:Operations:
-- 1/x1/x
-- 1/sqrt(x)1/sqrt(x)
-- x^yx^y
-- clampclamp
-- lots of add, multiplylots of add, multiply

All of this at ~1 billion fragments/secAll of this at ~1 billion fragments/sec

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 33

Variety in materials programmable shaders

• Real world has infinite variety of materials
– Need programmable shaders to describe them

• Example fragment program in Cg/HLSL:

void normalmapped(float2 void normalmapped(float2 normalMapTexCoordnormalMapTexCoord : TEXCOORD0,: TEXCOORD0,
……

out float4 color : COLOR,out float4 color : COLOR,
uniform float ambient,uniform float ambient,
……))

{{
float3 float3 normalTexnormalTex, , ……;;
normalTexnormalTex = tex2D(normalMap, = tex2D(normalMap, normalMapTexCoord).xyznormalMapTexCoord).xyz;;
……
diffuse = diffuse = saturate(dot(normalsaturate(dot(normal, , normLightDirnormLightDir););
……
color = color = KdKd * (ambient + diffuse) +* (ambient + diffuse) +

Ks * Ks * pow(specularpow(specular, , specularExponentspecularExponent;;
}}

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 34

Programming model makes parallelism easy

• Program is re-run for every fragment (or vertex)
• Perfect parallelism:

– Program cannot communicate with other fragments
– No persistent state (each fragment is independent)
– In most respects, a “stream programming” model

• Each fragment gets one input record and one output record
• Fragment program = “stream kernel” or “filter”

Fragment #1Fragment #1
Fragment #2Fragment #2

……

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 35

Where shader programs execute

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

Fragment programFragment program

Vertex programVertex program

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 36

Animation:
Objects that move and deform

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 37

Two main questions:

• How do we describe object movement?

• How do we describe object deformation?

translatetranslate

deformdeform

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 38

Translation and rotation – the “math” way

Translation vectorTranslation vector

3x3 rotation matrix3x3 rotation matrix

TranslationTranslation

new old

x

y

z

x T x
y T y
z T z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

RotationRotation

new old

xx xy xz

yx yy yz

zx zy zz

x R R R x
y R R R y
z R R R z

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 39

Translation and rotation – The “graphics” way

0 0 0 1new old

xx xy xz x

yx yy yz y

zx zy zz z

x R R R T x
y R R R T y
z R R R T z
w w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

This is why GPUsThis is why GPUs
(and SSE2) support(and SSE2) support
44--vector shortvector short--SIMDSIMD
operations.operations.

Dot product and MACDot product and MAC
are criticalare critical…

4x4 rotation/translation/etc. matrix4x4 rotation/translation/etc. matrix

…
Implicit divisionImplicit division

Division is eventually performed explicitly.Division is eventually performed explicitly.
But HW should just support reciprocal.But HW should just support reciprocal.

1

final new

x x
y y

w
z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 40

Scene graph describes entire scene

• Scene graph is a data structure:
– Includes objects and 4x4 xforms.
– Managed by CPU.
– Updated as objects move.

• CPU traverses scene graph
every frame:
– Feeds 4x4 xforms, shaders to GPU
– Feeds triangles to GPU
– May skip parts of scene known

to be hidden from view.

• Games are often CPU-limited! Figure: Figure: gamedev.netgamedev.net

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 41

“Skinning” – blending multiple xform matrices

• Used for non-rigid objects, like humans
• One xform matrix for each major bone

– E.g. upper arm, lower arm
• Vertices near bone boundaries use two or more

matrices.
– E.g. near elbow, shoulder.

Figure: Figure: nvidia.comnvidia.com

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 42

Skinning needs variable-iteration loop

for (for (intint i = 0; i < i = 0; i < numBonesnumBones; i++); i++)
{{

// transform the offset by bone i// transform the offset by bone i
transformedPositiontransformedPosition = = transformedPositiontransformedPosition + + curWeight.xcurWeight.x **

vec4((boneMatrices[ivec4((boneMatrices[int(curIndex.x)] *nt(curIndex.x)] *
position).xyzposition).xyz, 1.0);, 1.0);

// transform normal by bone i// transform normal by bone i
transformedNormaltransformedNormal = = transformedNormaltransformedNormal + + curWeight.xcurWeight.x **

(mat3(boneMatrices[in(mat3(boneMatrices[int(curIndex.x)]) * t(curIndex.x)]) * normal).xyznormal).xyz;;

curIndexcurIndex = = curIndex.yzwxcurIndex.yzwx;;
curWeightcurWeight = = curWeight.yzwxcurWeight.yzwx;;

}}

gl_Positiongl_Position = = gl_ModelViewProjectionMatrixgl_ModelViewProjectionMatrix * * transformedPositiontransformedPosition;;

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 43

Visibility and Z-buffers

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 44

Hidden surface problem

• At each pixel,
which surface is closest to the viewpoint?
– We want the pixel to be the color of that surface point

• Many different algorithms for this task:
– “Z-buffer” is used in all current GPU’s
– But augmented with preprocessing on CPU
– Other solutions used in past (and future?)

• More general version of this problem:
– Which surface, if any, comes between points A and B?
– Needed for shadows, global illumination, …

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 45

The Z-buffer algorithm

Figure: Figure: ProsiseProsise, How Computer Graphics Work, How Computer Graphics Work

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 46

Z-buffer algorithm uses “brute force”

for each pixel (i,j) do
Z-buffer [i,j] ← FAR
Framebuffer[i,j] ← <background color>

end for

for each polygon A do
for each pixel in A do

Compute depth z and shade s of A at (i,j)
if z > Z-buffer [i,j] then

Z-buffer [i,j] ← z
Framebuffer[i,j] ← s

end if
end for

end for

-- Touches eachTouches each
polygon exactlypolygon exactly
once.once.

-- Application canApplication can
choose polygonchoose polygon
order.order.

-- But:But:
NearlyNearly--randomrandom
accesses toaccesses to
frambufferframbuffer..

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 47

Modern Z-buffer graphics pipeline

Vertex
Processor

Fragment
Processor

Triangle
Assembly &
Rasterization

Framebuffer
Operations

Fram
ebuffer

Textures

Texture
Filtering &

Decompression

Z compare (R/M/W),Z compare (R/M/W),
RGB blend (R/M/W)RGB blend (R/M/W)

= Programmable

= Not programmable – hardwired algorithms

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 48

Why is graphics hardware fast?

• Specialization
– Gradually becoming less important (esp. for FLOPS)
– But still matters a lot (esp. for memory subsystems)

• Parallelization
– Rapidly becoming more important
– Two kinds:

• Task parallelism – pipeline of operations
• Data parallelism

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 49

Programmable units in GPUs process data streams

uniform
values

• The programmable unit executes a computational kernel (i.e.
vertex program) for each input element (i.e. vertex)

• Streams consist of ordered elements
• Fragment processor can read from texture memory

Stream
Processor

Input stream
(e.g. from vertex array) Output stream

V1 V2 … Vn V1 V2 … Vn

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 50

Stream model supports data parallelism

Stream
Unit #1

V1 V2 … Vn

V1 V2 … Vn

Stream
Unit #3

Stream
Unit #2

• Communication between elements is prohibited

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 51

Lots of data parallelism – at most stages

L2 Tex

Memory
Partition

Command and Data Fetch

Triangle Setup, Rasterizer

Shader Thread Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

[hardwired][hardwired]

[program][program]

[program[program
(except(except
texture)]texture)]

Z compareZ compare
[hardwired][hardwired]

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 52

A bane of parallelism: Order matters!

• Current APIs require in-order triangle completion
– Observable if Z compare is a tie
– Or when old triangle is blended with new one

• Requirement reduces to:
– In-order completion of fragments from different triangles

that map to the same pixel.
– Non-overlapping fragments can (and do)

complete out of order.
• Places major constraints on possible architectures
• Serialization points exist at command processor

and rasterizer.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 53

But why not eliminate ordering requirement?

• Several answers:
– Ordering is useful, particularly for blending
– Ordering requirement defines results precisely

• Without it, could have race conditions
• Different hardware (or even clock rates) could produce different

results from same program!
• Rapid HW evolution requires precise programming model

• This is a fundamental issue in parallel architecture
– Could the GPU solution be generalized?
– Not clear if current GPU approach can be sustained as

GPU programming models become more flexible

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 54

Multisampling – decouple visibility & shading

• Goal: reduce “jaggies” at object edges

• Solution: Compare Z values at several points within pixel
– Color only computed once per pixel (per triangle)
– Color and Z are stored 4 times (but possibly compressed!)

Figure: Kurt Figure: Kurt AkeleyAkeley

One pixel:One pixel:

Z sample locationsZ sample locations
Color sample locationColor sample location

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 55

More difficult visibility problems
(not just from eyepoint)

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 56

Shadows: Visibility from light

EyepointEyepoint visibilityvisibility

Light visibilityLight visibility
(which surfaces(which surfaces
are shadowed?)are shadowed?)

??

Any surface that is not visible from the light is in shadow.Any surface that is not visible from the light is in shadow.

Simplest case: Treat light as a single point (Simplest case: Treat light as a single point (““hard shadowshard shadows””))

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 57

Solution #1 for hard shadows: Shadow maps

Shadow map =Shadow map =
Auxiliary ZAuxiliary Z--buffer usingbuffer using
light as viewpointlight as viewpoint

Comments:Comments:
-- Conventional shadow mapsConventional shadow maps

prone to sampling artifacts.prone to sampling artifacts.
-- Current games do not useCurrent games do not use

shadow mapsshadow maps
-- Enhanced variants likelyEnhanced variants likely

to fix these problems overto fix these problems over
next few years.next few years.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 58

Solution #2 for hard shadows: Shadow volumes

-- Uses Uses ““stencil bufferstencil buffer””
(counter at each pixel)(counter at each pixel)

-- Renders many largeRenders many large
polygons.polygons.

-- Demands highDemands high
stencil buffer bandwidthstencil buffer bandwidth

-- Used in DOOM 3 gameUsed in DOOM 3 game
-- But algorithm likely toBut algorithm likely to
be phased out in nearbe phased out in near
future.future.

Source: McGuire Source: McGuire et al.et al.: Fast, Practical, and Robust Shadows, 2003: Fast, Practical, and Robust Shadows, 2003

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 59

Shadow algorithms are in flux

• Realistic shadows are new in games (~1 year)
• Current approaches are inadequate

– Issues with performance and/or image quality
• Wide variety of new techniques under development
• Likely to be major driver of new HW capabilities
• Interaction between algorithms and hardware

is especially complex

My opinion:
– Representative of future challenges for GPU’s.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 60

Data Types

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 61

Data type (precision) summary

Old New

Fragment processor fixed10-12 float32

Framebuffer color,
blend unit

fixed8 fixed8, float16

Textures,
texture filter

fixed8 fixed8, float16

Vertex processor
(positions)

float32 float32

Rasterizer Various float Various float

Increasing precision driven by:Increasing precision driven by:
-- Programmable shading Programmable shading ---- [fragment processor][fragment processor]
-- HighHigh--dynamicdynamic--range rendering and range rendering and framebuffersframebuffers ---- [texture, [texture, framebufferframebuffer, blend], blend]
-- Global illumination (mostly for future) Global illumination (mostly for future) ---- [fragment processor, [fragment processor, framebufferframebuffer, textures], textures]

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 62

Henry Moreton – GPU case study

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 63

[35 Missing Slides]

We are unfortunately unable to put Henry We are unfortunately unable to put Henry MoretonMoreton’’ss portion ofportion of
the presentation (35 slides in total) online.the presentation (35 slides in total) online.
Please contact Henry directly for any questions about this mattePlease contact Henry directly for any questions about this matter.r.
His email is <His email is <hmoretonhmoreton--atat--nvidianvidia--dotdot--comcom>.>.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 64

Bill Mark - More architectural details

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 65

Massive multithreading can hide memory latency
(a.k.a. (a.k.a. ““Never stall on a cache missNever stall on a cache miss””))

• Consider texture mapping:

• Each fragment is a thread
• Context switch on texture fetch

– Must hide memory latency – cache miss rate > 10%
• Need 100+ threads per fragment processor!

– Fortunately, thread context is small (<< 100 bytes, typ.)

for each fragmentfor each fragment {{
compute_texture_addressescompute_texture_addresses();();
texelstexels = = memory_readmemory_read(texaddress1, 2, 3, 4, 5, 6, 7, 8);(texaddress1, 2, 3, 4, 5, 6, 7, 8);
compute_color(texelscompute_color(texels););

}}

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 66

Texture prefetching architecture

Figure: Pat Figure: Pat HanrahanHanrahan and Kurt and Kurt AkeleyAkeley..
Reference: Reference: IgheyIghey et alet al, , PrefetchingPrefetching in a Texture Cache Architecturein a Texture Cache Architecture

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 67

Prefetching with a texture cache

Figure: Pat Figure: Pat HanrahanHanrahan and Kurt and Kurt AkeleyAkeley..

-- Keeps fragments in order.Keeps fragments in order.
-- Basic idea generalizesBasic idea generalizes
to programmable fragmentto programmable fragment
processors.processors.

-- Various enhancements andVarious enhancements and
modifications can be made.modifications can be made.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 68

Multithreaded prefetch also used for framebuffer

Figure: W. Park et al,Figure: W. Park et al,
An Effective Pixel Rasterization Pipeline ArchitectuAn Effective Pixel Rasterization Pipeline Architecture for 3D Rendering Processors, 2003re for 3D Rendering Processors, 2003

Also, see NVIDIA and ATI patents, e.g. US #6,734,861, filed Oct Also, see NVIDIA and ATI patents, e.g. US #6,734,861, filed Oct 2000.2000.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 69

Framebuffer has R/W hazards

• Semantics say:
– Preserve ordering
– Atomic R/M/W for Z compare

• In practice:
– Semantics only matter for two fragments at same pixel
– Detect this and special case it

• Conceptually, 1 million locks (one for each pixel)
• Hash instead!

• All of this is hardwired
– Needs very high throughput
– One of the big “tar pits” for general purpose hardware

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 70

Maximize cache hit rates with 2D tiling

• Framebuffer and textures organized into tiles
– Allows capture of 2D spatial coherence by caches

• Rasterizer generates fragments in tile order
• All of this is hardwired

Reference:Reference:
McCormack et al,McCormack et al,
Neon: a singleNeon: a single--chip 3D workstation graphics accelerator, chip 3D workstation graphics accelerator,
19981998

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 71

Other important optimizations

• Early fragment kill
– Perform Z and/or stencil test before shading, texturing
– Be careful, since semantically it occurs afterward

• Hierarchical (low-res) Z/stencil buffers
– Keep low-res buffers on-chip
– Improves performance of early-discard tests
– Annoying interactions with other features

• E.g. Turn this stuff off if fragment shader can modify Z

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 72

Miscellaneous

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 73

Yield tricks

• Top-of-the-line HW has 16 fragment units
– But it’s quite hard to find these parts

• Almost-top HW has 12 fragment units
– Much easier to find these parts

• Why might that be?

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 74

General purpose computation on GPUs

• Use fragment processors as stream processors
• Specialized languages for this purpose

– Brook for GPU’s [Buck et al., 2003]
– Sh [McCool et al, 2004]

• Applications include:
– Image processing
– Some BLAS routines (single-precision only)
– Ray casting

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 75

Full stream proc GPU

Current GPU’s
(efficient Z-buffer rendering,
with programmable shading)

Full stream
programming

(e.g. Imagine processor)

GPU stream
programming

- Tagged caches
- R/M/W blend,Z
- etc.

- Scatter to memory
- Conditional kernel outputs
- Efficient reduction
- etc.

Fortunately, many of the more general stream programming features that today’s
GPU’s lack could be added with minimal impact on cost and rendering performance

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 76

Historical trends

Year NVIDIA
Product

Mtri/
sec

Mfrag/
sec (*)

BW
GB/sec

Clk
MHz

Trnst
cnt (M)

Proc
(um)

100 4

9

25

57
63

121

222

175

.35

.22

.18

.18

.15

.13

166

200
300

500

425 .13

1998 Riva ZX 3 100 1.6

1999 Riva TNT2 9 350 3.2

2000 GeForce2 GTS 25 664 5.3

2001 GeForce3 30 800 7.4
2002 GeForce4 Ti 4600 60 1200 10.4

2003 GeForce FX 167 2000 16.0

2004 GeForce 6800 Ultra 170 6800 35.2

• Yearly growth rates well above CPU rate of ~1.5
– While adding substantial new functionality!

• But growth rates for BW & die area probably unsustainable

Source: Mark Kilgard, NVIDIA* Fragment fill rate for 1 texture.* Fragment fill rate for 1 texture.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 77

Recap

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 78

Why is graphics hardware fast?

• Specialization
– Serial bottlenecks such as rasterization
– Memory access, caching, compression, addressing
– Ordering of parallel memory writes
– Shepherding of parallelism, data flows, communication
– Smart work avoidance: early Z tests, etc.
– Texture filtering

• Parallelism
– Multithreaded vertex processor
– Multithreaded fragment/texture processor
– “Multithreaded” ROP unit (Z test, etc)

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 79

Advantages of Z-buffer algorithm

• Reasonable computational cost
• Each polygon touched just once

– Application can feed polygons in any order.
– Works well for moving objects.

• Producer-consumer locality within HW pipeline
• Good spatial locality of memory accesses

– Texture
– Framebuffer

• Most parts of algorithm easily parallelized

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 80

The “tar pits” for conventional architects

• GPUs must optimize for throughput, not latency
– We see this trend emerging elsewhere, too.

• 3D graphics computations != signal processing
– Surprisingly irregular and complicated
– Especially with optimizations like compression

• Functionality changes rapidly
– Big mistake to design for old benchmarks
– Challenging for academics to keep up

• Specialized HW still critical to Z-buffer performance
• Architects must understand the application

– Perhaps generally true for parallel systems?

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 81

The Future

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 82

Near term (next two years)

• Additional pipeline stages become programmable
– E.g. Geometry subdivision/tesselation

• Additional flexibility in data flow, communication
– Easier to implement innovative graphics algorithms
– Easier to use GPU as “general purpose”

parallel processor.
• First real successes for using GPU as

“general purpose” processor
– But limitations of stream programming model

will also become apparent.

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 83

Longer term

Sequential

Parallel

< --------------------------->

CPU

GPU ?

Specialized < --------- > General

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 84

Forces driving long-term evolution

• Desire to accelerate other computations
– Collision detection and response, AI, etc.
– Scene management

• Desire for more realistic images
– Better shadows, indirect illumination, antialiasing, etc.
– Z buffer has trouble with needed visibility computations
– Possibilities include:

• Enhancements to Z buffer
• Raycasting visibility algorithms

• Work smarter, not harder
– Trend away from brute-force, one-size-fits-all algorithms

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 85

Long-term predictions

• Graphics algorithms continue to evolve rapidly
– End of Z-buffer as we know it

• Graphics is major driver of single-chip parallelism
– Return to “software rendering”
– Two parallel programming models: Streams and CSP

• One chip combines “CPU” and “GPU”
– Fine grained throughput-optimized cores
– Coarse grained latency-optimized cores
– Specialized HW for certain tasks
– Who makes it?
– What are details of its architecture?

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 86

Game consoles as innovation platform

• Clean slate design
– Minimal need for backward compatibility

• One company controls entire system design
– Graphics processor
– CPU
– APIs and programming languages
– Operating system
– Application software

• But economics still discourage radical designs

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 87

Open research questions

• How should real-time graphics algorithms
and architectures co-evolve?
– What new/enhanced algorithms? What HW?

• Specialized vs. General HW?
– What is the right balance?
– Is semi-specialized HW useful? (e.g. R/M/W)

• What programming model for parallel units?
– Stream, CSP, both, other?

• What granularity of parallel units?
– Lots of little ones vs. a few big ones vs. hybrids

• Can HW for graphics also accelerate other apps?

3D Graphics Architecture Tutorial – William Mark and Henry Moreton – Micro-37 – Dec 4, 2004 88

The End

Questions?

	Real-Time 3D Graphics Architecture
	Speaker backgrounds
	Dedicated graphics chip in modern PCs
	CPU vs. Graphics Peak Performance
	Highly parallel, single chip architecture
	Task is computationally intensive
	HW is programmable (for some units)
	“Mainstream” architects can learn from GPUs
	Tutorial outline
	Fundamentals of 3D Graphics
	Motivation for learning graphics fundamentals
	Graphics applications and HW co-evolve
	A previous change
	The rendering problem
	The computational questions in rendering
	The rendering equation
	Geometry is modeled using triangle meshes
	Store a surface-normal vector at each vertex
	Triangles sometimes subdivided by GPU
	Texture mapping – apply image to geometry
	Texture mapping using texture coordinates
	Texture aliasing problem
	MIP-maps
	At runtime, for each fragment:
	Anisotropic texture filtering
	Per-fragment texturing cost in Z-buffer system
	Where texture HW lives in Z-buffer pipeline
	Surface/light interaction (shading)
	Shading combines two computations
	Shading dominates rendering cost
	A simple shading computation
	Variety in materials programmable shaders
	Programming model makes parallelism easy
	Where shader programs execute
	
	Two main questions:
	Translation and rotation – the “math” way
	Translation and rotation – The “graphics” way
	Scene graph describes entire scene
	“Skinning” – blending multiple xform matrices
	Skinning needs variable-iteration loop
	
	Hidden surface problem
	The Z-buffer algorithm
	Z-buffer algorithm uses “brute force”
	Modern Z-buffer graphics pipeline
	Why is graphics hardware fast?
	Programmable units in GPUs process data streams
	Stream model supports data parallelism
	Lots of data parallelism – at most stages
	A bane of parallelism: Order matters!
	But why not eliminate ordering requirement?
	Multisampling – decouple visibility & shading
	
	Shadows: Visibility from light
	Solution #1 for hard shadows: Shadow maps
	Solution #2 for hard shadows: Shadow volumes
	Shadow algorithms are in flux
	Data Types
	Data type (precision) summary
	Henry Moreton – GPU case study
	[35 Missing Slides]
	Bill Mark - More architectural details
	Massive multithreading can hide memory latency
	Texture prefetching architecture
	Prefetching with a texture cache
	Multithreaded prefetch also used for framebuffer
	Framebuffer has R/W hazards
	Maximize cache hit rates with 2D tiling
	Other important optimizations
	Miscellaneous
	Yield tricks
	General purpose computation on GPUs
	Full stream proc GPU
	Historical trends
	Recap
	Why is graphics hardware fast?
	Advantages of Z-buffer algorithm
	The “tar pits” for conventional architects
	The Future
	Near term (next two years)
	Longer term
	Forces driving long-term evolution
	Long-term predictions
	Game consoles as innovation platform
	Open research questions
	The End

