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Abstract 
 
Rendering systems organized around the ray tracing visibility algorithm provide a powerful and 
general tool for generating realistic images. These systems are being rapidly adopted for offline 
rendering tasks, and there is increasing interest in utilizing ray tracing for interactive rendering as 
well. Unfortunately, standard ray tracing systems suffer from several fundamental problems that 
limit their flexibility and performance, and until these issues are addressed ray tracing will have 
no hope of replacing Z-buffer systems for most interactive graphics applications. 
 
To realize the full potential of ray tracing, it is necessary to use variants such as distribution ray 
tracing and path tracing that can compute compelling visual effects: soft shadows, glossy 
reflections, ambient occlusion, and many others. Unfortunately, current distribution ray tracing 
systems are fundamentally inefficient. They have high overhead for rendering large dynamic 
scenes, use excessively detailed geometry for secondary rays, perform redundant computations 
for shading and secondary rays, and have irregular data access and computation patterns that are a 
poor match for cost-effective hardware. 
 
We describe Razor, a new software architecture for a distribution ray tracer that addresses these 
issues. Razor supports watertight multiresolution geometry using a novel interpolation technique 
and a multiresolution kD-tree acceleration structure built on-demand each frame from a tightly 
integrated application scene graph. This dramatically reduces the cost of supporting dynamic 
scenes and improves data access and computation patterns for secondary rays. The architecture 
also decouples shading computations from visibility computations using a two-phase shading 
scheme. It uses existing best-practice techniques including bundling rays into SIMD packets for 
efficient computation and memory access. We present an experimental system that implements 
these techniques at near-interactive frame rates. We present results from this system 
demonstrating the effectiveness of its software architecture and algorithms. 
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paper until such time as the revisions to the TOG paper have been completed.  This technical 
report supersedes the content of UTCS TR-06-21. 
 
Pages 1-2 of this document provide some updated information that did not appear in the original 
document, including some missing references to previous work and acknowledgements. 
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Loop subdivision surfaces.  It uses a fixed subdivision depth in contrast to Razor which 
subdivides adaptively.  By using a fixed subdivision depth, Benthin et al.’s system avoids the need 
to address many of the issues with surface cracking and tunneling that Razor must address. 
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Razor: An Architecture for Dynamic Multiresolution Ray Tracing

Figure 1: Images rendered by Razor at near-interactive frame rates. The first three scenes on the left have millions of visible micropolygons
while the rightmost scene is a technical demo. All four scenes are animated with antialiasing and soft shadows enabled. The two scenes on
the right are subdivision surfaces. Starting from the left, the render times are 3.83 sec, 3.77 sec, and 6.94 sec.

Abstract

Rendering systems organized around the ray tracing visibility algo-
rithm provide a powerful and general tool for generating realistic
images. These systems are being rapidly adopted for offline render-
ing tasks, and there is increasing interest in utilizing ray tracing for
interactive rendering as well. Unfortunately, standard ray tracing
systems suffer from several fundamental problems that limit their
flexibility and performance, and until these issues are addressed ray
tracing will have no hope of replacing Z-buffer systems for most
interactive graphics applications.

To realize the full potential of ray tracing, it is necessary to use vari-
ants such as distribution ray tracing and path tracing that can com-
pute compelling visual effects: soft shadows, glossy reflections,
ambient occlusion, and many others. Unfortunately, current distri-
bution ray tracing systems are fundamentally inefficient. They have
high overhead for rendering large dynamic scenes, use excessively
detailed geometry for secondary rays, perform redundant computa-
tions for shading and secondary rays, and have irregular data access
and computation patterns that are a poor match for cost-effective
hardware.

We describe Razor, a new software architecture for a distribu-
tion ray tracer that addresses these issues. Razor supports wa-
tertight multiresolution geometry using a novel interpolation tech-
nique and a multiresolution kD-tree acceleration structure built on-
demand each frame from a tightly integrated application scene
graph. This dramatically reduces the cost of supporting dynamic
scenes and improves data access and computation patterns for sec-
ondary rays. The architecture also decouples shading computations
from visibility computations using a two-phase shading scheme. It
uses existing best-practice techniques including bundling rays into
SIMD packets for efficient computation and memory access. We
present an experimental system that implements these techniques
at near-interactive frame rates. We present results from this sys-
tem demonstrating the effectiveness of its software architecture and
algorithms.

Keywords: ray tracing, rendering, level of detail, hierarchical
build, lazy build, multiresolution, subdivision surfaces

1 Introduction

It has been a longstanding goal in computer graphics to synthesize
images interactively that are realistic or that achieve a particular
artistic look. Despite much progress over the past thirty years, cur-
rent interactive graphics systems are still far from that goal.

It is becoming increasingly clear that the Z-buffer algorithm used
in today’s interactive graphics systems is likely to fundamentally
limit progress towards photorealism. Within the next 5-10 years,
we believe that the Z-buffer algorithm will need to be augmented
or replaced with algorithms such as ray tracing [Whitted 1980] that
efficiently support a more general class of visibility queries. This
transition to ray tracing is already well under way in offline render-
ing [Christensen et al. 2003; Tabellion and Lamorlette 2004].

Recently developed interactive ray tracing systems [Parker et al.
1999; Woop et al. 2005; Reshetov et al. 2005; Wald et al. 2006]
compellingly demonstrate that it is no longer possible to dismiss
interactive ray tracing as computationally infeasible. Yet these ex-
isting systems have serious limitations that make them impractical
for most mainstream interactive applications. Many of these sys-
tems perform poorly for large dynamic scenes, and most of them
implement classical Whitted ray tracing or less, which for most
applications does not provide a compelling improvement in visual
quality over state-of-the-art Z-buffer rendering.

The true advantages of ray tracing visibility algorithms only be-
come apparent with the addition of effects that are produced using
distribution ray tracing [Cook et al. 1984]. These effects include
soft shadows, glossy reflections, diffuse reflections, ambient occlu-
sion, subsurface scattering, final gathering from photon maps and
others. But current distribution ray tracing systems are fundamen-
tally inefficient, particularly for dynamic scenes. Until these ineffi-
ciencies are resolved, ray tracing will not be able to replace Z-buffer
rendering for most interactive applications.
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In this paper, we explain why current distribution ray tracing sys-
tems are inefficient, and propose a new rendering-system architec-
ture that reduces or eliminates the various inefficiencies. Our ap-
proach is explicitly designed to be appropriate for future interactive
use. We also present an experimental system that implements our
approach.

It is important to understand that our motivation for this work is
to develop a better understanding of how to build future interactive
rendering systems that support the full set of functionality that one
would want in an interactive ray tracing system. This strategy con-
trasts with most other recent work on interactive ray tracing, which
takes the opposite approach of either restricting functionality (e.g.
dynamics) or image quality (e.g. resolution, visual effects, shading)
so that the system can run at interactive rates today.

The most important new ideas in this paper are:

• The system architecture as a whole.

• A novel algorithm for representing and intersecting continu-
ous level-of-detail surfaces in a ray tracer.

• A practical technique for lazily building a multiresolution kD-
tree each frame from a tightly-integrated scene graph holding
a dynamic scene. All major system data structures except the
original scene graph are rebuilt every frame.

• An approach to surface shading that partially decouples shad-
ing computations from visibility computations. This approach
extends the grid-based shading approach pioneered in the
REYES system [Cook et al. 1987] to a ray tracing framework.

2 The Challenges

There are several challenges to building an efficient distribution ray
tracing system:

Overall system performance:

Distribution ray tracing is computationally expensive, so systems
must use a variety of best-practice techniques to achieve high per-
formance at reasonable cost. First, geometry must be tessellated
into triangles or quads before intersection testing (see e.g. [Chris-
tensen et al. 2003]). Second, the system must use an efficient ac-
celeration structure such as a cost-optimized kD-tree [Havran and
Bittner 2002] 1. Third, the system must support aggregation of rays
into packets [Wald et al. 2001]. By bundling rays into packets,
cache hit rates are improved, branch mis-predict penalties are re-
duced, and use of register SIMD hardware such as SSE is improved.
These practical considerations constrain other aspects of the system
design.

Dynamic scenes:

If objects are moving within the scene, it is not possible to treat
the construction of a spatial-acceleration structure as a “free” pre-
processing step – part or all of the work must be performed each
frame. Furthermore, if the objects undergo non-rigid motion such
as deformation (as is common in skinned characters used in com-
puter games), then it is not even possible to use the common opti-
mization of pre-building acceleration structures for individual ob-
jects.

If the scene is complex with many occlusions (such as an entire
building with occupants), then it is unacceptably expensive to build

1This data structure is perhaps more accurately an axis-aligned BSP tree,

but we use the common ray tracing parlance here

the entire acceleration structure every frame. This problem is even
more acute if we want to represent each object at multiple levels
of detail; in this case the finer levels of detail will cause the sys-
tem to run out of memory if we store tessellated geometry in the
acceleration structure.

Distribution-sampled secondary rays:

Distribution ray tracing systems cast large numbers of secondary
rays. For example, many rays are cast to sample area light sources,
to sample incoming BRDF directions, and for ambient occlusion
computations. There are many more secondary rays than primary
rays, so the cost of tracing the secondary rays and tessellating the
geometry they hit dominates the ray tracing time.

Redundant shading computations:

Most ray tracers perform shading computations at each ray hit
point. At high screen-space super-sampling rates, most of these
shading computations are redundant. The situation is even worse
for shaders that require arbitrary differential computations, since
these shaders must be run three times at each hit point to com-
pute discrete differentials [Gritz and Hahn 1996]. Redundant shad-
ing computations can severely degrade overall system performance,
since it is common for a renderer’s surface shading costs to be a
substantial part of the total rendering cost.

3 High-level solutions

Once the challenges above are understood, a set of potential solu-
tions emerges. At the conceptual level these solution strategies are
simple, but they each uncover more detailed challenges. In this sec-
tion we explain these solution strategies and corresponding detailed
challenges.

Use multiresolution surfaces to reduce the cost of tracing sec-
ondary distribution rays:

As [Christensen et al. 2003] and [Tabellion and Lamorlette 2004]
have demonstrated, most secondary rays can be traced using a very
coarse geometric representation of the scene. Mathematically the
reason for this is that most secondary rays have large ray differen-
tials [Igehy 1999] – i.e. they diverge strongly from each other as
they progress away from their origins.

Efficient distribution ray tracing for large scenes requires a mul-
tiresolution scene representation. Without this capability, sec-
ondary rays will make effectively random accesses to the fully de-
tailed scene database. In particular if the scene is dynamic, gen-
erating and accessing this data will be prohibitive. In addition
to improving memory performance, and reducing the cost of tes-
sellation and shading, these techniques potentially improve SIMD
packet tracing efficiency for the same reasons.

Multiresolution and level-of-detail techniques are well understood
for Z-buffer systems, but using them in a ray tracing system
presents additional challenges. Most importantly, there is no longer
a single reference point (the eye point) with which to set the reso-
lution of each surface in the scene. Instead, each ray – including
secondary rays – may request an LOD that is essentially unrelated
to that requested by any other ray. An important implication of
this situation is that any particular surface region may be accessed
at multiple levels of detail by different rays. Under these condi-
tions, the problem of guaranteeing that surfaces are watertight is
much harder than it is in a Z-buffer system. This guarantee is im-
portant to insure that reflections, refractions, and shadows do not
have crack artifacts. In future interactive systems these guarantees
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must operate automatically; it will be unacceptable to rely on man-
ual per-shot tuning of LOD parameters as is done in some offline
ray tracing systems [Tabellion and Lamorlette 2004].

Adding multiresolution capability to a ray tracing system makes the
design of the acceleration structure more complicated. Standard
space-partitioning data structures represent each surface once at a
single level of detail. To store each surface at multiple resolutions,
the system must use multiple acceleration structures or be able to
represent the same surface more than once in a single acceleration
structure. Similarly, the ray traversal algorithm must be able to
select the appropriate representation of a surface for intersection
tests with the ray.

These challenges are more serious in a system that builds its accel-
eration structure on demand from dynamic geometry. In particular,
solutions that require extensive preprocessing of geometry or that
require global topological knowledge are unlikely to be acceptable.

Thus the challenges are: 1) How do we provide multiresolution
surfaces that are watertight for ray tracing? 2) How should an ac-
celeration structure store multiresolution surfaces so that the overall
design is efficient for dynamic geometry?

Support dynamic scenes by lazily building the acceleration
structure each frame:

The most straightforward approach to supporting arbitrary dynamic
scenes is to dispense with the idea of pre-building and maintaining
an acceleration structure, and instead build the acceleration struc-
ture from scratch each frame. This directly addresses the worst (and
not unreasonable) case of unrestricted dynamic motion of all of the
geometry in the scene. To avoid unnecessary work, the acceleration
structure is built lazily, so that only the portions of it needed for a
particular frame are built. At the end of the frame, the acceleration
structure is discarded.

This conceptually simple idea presents three major challenges:
First, how do we efficiently find the subset of the scene geome-
try that we need to insert into the acceleration structure in any par-
ticular frame? Second, how does a system like this interface with
the rest of an interactive graphics application? Third, how do we
keep the cost of lazy kD-tree construction low enough to do it ev-
ery frame?

Decouple shading from visibility to eliminate redundant shad-
ing computations:

In a system that uses super-sampling the desired rate for visibility
computations is usually higher than that for shading computations.
The obvious solution to this mismatch is to decouple the visibility
computations from the shading computations in some manner.

This is exactly the approach used by the REYES system [Cook
et al. 1987] and by the multi-sampling technique used in modern Z-
buffer graphics systems [Akenine-Moller and Haines 2002]. How-
ever, both of these systems are designed exclusively for eye rays.
A ray tracer cannot pre-shade for a single viewpoint as the REYES
system does. A ray tracer also cannot assume a regular pattern for
all rays as the multi-sampling technique does.

Worse yet, the goal of decoupling visibility from shading interacts
in difficult ways with the goal of using multiresolution surfaces.
We now have a situation where shading may need to be performed
at multiple resolutions for any particular surface. This is straight-
forward when visibility is coupled to shading, but less so once we
decouple them. How do we solve this problem?

4 System architecture

It is clear that these various individual strategies for building an
efficient distribution ray tracing system interact in complex ways.
We will show how to combine these strategies so that they are com-
patible with each other and form a single integrated system. While
some pieces of our system adapt well-known approaches, other por-
tions of the system are individually novel and require more detailed
explanation. Fortunately, the major components are familiar from
any standard ray tracer: the ray/surface intersection technique, the
acceleration structure, and the shading system.

4.1 Multiresolution ray/surface intersection

The problem of managing geometric level of detail is considerably
more challenging in a ray tracer than it is in systems such as a
Z-buffer that only use eye rays or their equivalent. In a Z-buffer
system, the level of detail required to achieve a desired visual ac-
curacy can be calculated consistently over the entire scene based
on distance from the eye. In a ray tracing system, in general, the
required level of detail is a complicated continuous function of lo-
cation along a ray and this function is different for each ray. This
raises the question of how to generate and manage surface tessel-
lations at different levels of detail such that each ray can be inter-
sected with the unique representation that it requires in a robust and
efficient fashion.

In order to cache and re-use tessellations and associated vertex data
or shading computations, they must be generated at discrete levels
of detail. Unfortunately, in a ray tracer, naive discrete LOD ap-
proaches suffer from what we call the tunneling problem. Figure 2
illustrates the simplest version of the problem. In the figure, the
level of detail used for intersection between the ray and the surface
changes abruptly at a point along the ray. This is a simple result of
discretization and of the fact that the required LOD is a function of
location along the ray. Unfortunately, the ray switches from want-
ing the fine version to wanting the coarse version at a point along
the ray which is after the intersection with the coarse version but
before the intersection with the fine version. This causes the ray
to pass through both versions of the surface without any intersec-
tion being detected. This problem is closely related to LOD “pop-
ping”, and differs from other typical ray tracing artifacts. Unlike
patch “cracking”, holes can appear even in the middle of individ-
ual triangles. Unlike numerical precision problems, the holes have
significant geometric extent. A key challenge in ray tracing mul-
tiresolution surfaces is to design a technique that avoids tunneling
while satisfying other system constraints.

Our solution is to use a hybrid scheme, with discrete levels of de-
tail but with continuous interpolation (“geomorphing”) between the
levels. There are a number of discrete levels of detail (up to four-
teen in the prototype), each specified by a world-space edge length
threshold. Each level is a distinct version of the entire scene (con-
structed lazily of course), targeted at the given edge length thresh-
old. The system interpolates between adjacent discrete levels on
the fly to produce a unique surface for intersection testing against
each ray. The continuous interpolation avoids tunneling as well as
other LOD “popping” artifacts. The only other technique that we
are aware of that handles multiresolution tessellations for arbitrary
rays and avoids tunneling is that described in [Christensen et al.
2003; Christensen et al. 2006] (see section 6 for comparison).

Figure 3 illustrates this scheme. We refer to the adjacent discrete
levels of detail as the fine mesh and the coarse mesh. The meshes
in our system are generated by subdivision, and each triangle in the
fine mesh maps to a portion of a single triangle in the coarse mesh.
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Figure 2: With discrete LODs, a ray may miss a surface completely
if it changes the LOD that it is requesting at a point along the ray
that is in between the surfaces produced by two discrete LODs.

The system is capable of corresponding each vertex of the finer
triangle with a point on the corresponding triangle in the coarse
mesh.

Figure 3: For each ray/triangle intersection test, the system gen-
erates a customized triangle that is specific to that ray. This cus-
tomized triangle (shown in green) is generated by interpolating be-
tween triangles from two discrete levels of detail (shown in blue
and in red). There is a separate interpolation weight for each vertex
of the customized triangle. The weight for a vertex is determined
by projecting the corresponding fine-triangle vertex (e.g. V1) onto
the ray, and computing the weight from the scale value at that point
on the ray (shown as yellow dots).

The system produces the in-between surface by interpolating be-
tween vertex positions in the fine mesh, and the corresponding
points on the coarse surface. This interpolation is performed inde-
pendently for each vertex in the fine mesh, with a separate interpo-
lation weight used for each of the three vertices in a triangle. The
interpolation weight for each vertex in the fine mesh is found by
projecting the vertex onto the ray, and computing the weight from
a continuous scale function defined on the ray. This projection and
interpolation step reduces the problem to normal ray/triangle inter-
section, and is thus very efficient (various direct solution alterna-
tives involve multiple cubic equations). The interpolation weights
in this scheme are associated with vertices, not triangles, so if both
the fine and the coarse meshes are watertight, the interpolated mesh
is as well. This relates to a key larger point. The fact that each dis-
crete level is a consistent view of the entire scene makes it relatively
easy to ensure that level’s properties (e.g. that it is crack-free). Any

such property that is in turn preserved by vertex-by-vertex interpo-
lation is therefore preserved in the surface that is “seen” by a ray.
Note that this guarantee is for a single ray, and that we currently
make no guarantees about the relation between what geometry will
be “seen” by one ray versus another. We also cannot guarantee that
a surface will not “misbehave” under interpolation (e.g. folding on
itself, etc.). There is some commonality between this approach and
eye-ray LOD techniques for terrain [Luebke et al. 2003].

The technique we have just described allows us to intersect a ray
with a blend of geometry from two adjacent discrete levels of detail.
The blend weights are computed from a continuous scale function
along the ray. The continuous scale function is calculated using ray
differentials [Igehy 1999].

4.1.1 Computing scale values for rays

Each ray in our system has an associated scale that varies continu-
ously with position along the ray. As explained earlier, this scale is
used to decide which surface resolution to use for intersection test-
ing. In this section we explain briefly how this scale is computed.

Our approach builds on the concepts of ray differentials [Igehy
1999] and path differentials [Suykens and Willems 2001], which
we will summarize here. Each ray carries information with it suffi-
cient to compute the origin and direction of its immediate neighbor.
For example, the image-plane differentials provide the origin and
direction of ray that is one pixel to the right and one pixel down on
the image. These differentials are propagated through events such
as reflections so that they continue to indicate the behavior of the
neighbor ray at that point in the ray tree. Additional differentials
are introduced each time the ray tree forks; for example, the system
generates an additional pair of differentials for a ray when an area
light source is sampled.

Each ray is best thought of as a beam with a finite cross-section.
At any point on the ray, the ray differentials specify the area and
geometry of the beam cross section. Most systems project this cross
section onto a hit surface to compute a texture footprint.

Our system uses the differentials in a different manner, to compute
a single, isotropic world-space scale value at each point on the ray.
The scale is computed such that it is proportional to the width of the
beam footprint. In the case of an anisotropic beam cross-section,
the minimum width is used. By choosing the minimum width we
guarantee that we tessellate and shade at a rate in each dimension
equal to or greater than the desired rate.

Our system currently simplifies the problem of computing foot-
prints from arbitrary path differentials by retaining the just most
important differential pair along with the scale value used at the
last intersection point. Area light rays provide an example of how
this simplification works: as they first leave the surface, their foot-
print is a constant determined by the spacing on the surface, but as
they move further away from the surface, the area-light differential
pair takes over, allowing the footprint to grow rapidly thereafter.
For some effects, it might be necessary to track more differentials.

4.1.2 Subdivision implementation

The geometry for each discrete scale is generated by adaptive tes-
sellation of subdivision patches. We have implemented two sub-
division systems which both work with Razor’s multiresolution
framework: the Planar system and the Catmull Clark system.
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The Planar system treats each base patch in the input geometry as
the control points for a bilinear patch. Planar patches are subdi-
vided by either splitting them in half along one of their parametric
directions or by converting them into a tesselated grid where each
parametric direction has its own tesselation rate. The Planar system
provides an interesting upper bound to the performance of our ge-
ometry system because it incurs much less overhead than a more
complicated subdivision scheme. In addition, the objects repre-
sented in the Planar system are conducive to our split-phase shading
model; however, they do not develop geometric complexity as they
are subdivided.

The Catmull-Clark system, which is the second geometry system,
treats each mesh from the input geometry as a Catmull-Clark subdi-
vision surface [Catmull and Clark 1978]. Unlike the Planar system,
Catmull-Clark patches develop addtional geometric detail as they
are subdivided. Our implementation has support for normals, tex-
tures, geometric creases, and texture creases [Halstead et al. 1993;
Biermann et al. 2000]. Following the design used by Derose et al.
[DeRose et al. 1998], the Catmull-Clark patches are represented as
a topology face in regions of the mesh that contain irregularities
and as a uniform bicubic B-spline in regions of the mesh that are
regular [Peterson 1994]. The latter representation is well suited for
Razor because it can be split into two smaller bicubics or tesselated
at a rate independently determined in each of its two parametric
directions. This support for anisotropic tesselation mitigates the
potential for high overtesselation caused by anisotropy in the base
patches.

As in any adaptive tessellation system, there is the possibility of
cracks forming between adjacent patches. In the Planar system,
patches have linear borders so no explicit crack fixing is needed,
regardless of a difference in tesselation rate across the border.
Catmull-Clark patches, on the other hand, border each other along
cubic B-splines which leads to potential cracks when neighboring
patches are tesselated at different rates. Razor restricts the size of
grids in the Catmull-Clark system to powers-of-two to guarantee
correspondence for the vertices of two neighboring patches. In
conjunction with a crack fixing algorithm that removes inter-patch
cracks regardless of whether the patches exist in the bicubic or
topology world, Razor is able to move vertices around to ”stitch”
the Catmull-Clark surface back together without introducing any
new geometry. The details of this algorithm are unfortunately out-
side the scope of this paper.

4.2 Dynamic Multiresolution Acceleration Structure

The system utilizes two primary data structures: a scene graph and
a multi-scale kD-tree acceleration structure. The upper levels of the
scene graph contain hierarchy nodes and base patches comprising
the scene and are generally persistent frame to frame, although they
may be updated according to animation or interaction as with any
typical scene graph system. The lower parts of the scene graph and
all acceleration data structures in the system are rebuilt from scratch
every frame. The lower levels of the scene graph contain split and
tesselated patches that are built out during the course of rendering a
frame subdividing the original base patches. Hierarchical bounding
volumes are maintained throughout this extended scene graph.

In order to support the interpolating intersection technique de-
scribed earlier, we would conceptually like to build a separate kD-
Tree for every pair of adjacent discrete levels. The geometric prim-
itive at the leaf nodes in each such tree would be a triangle pair
consisting of a finer-level triangle paired with the corresponding
portion of a coarser-level triangle. We implement this concept with
three key features: 1) the kD-trees for all of the level pairs are

merged into a single data structure, 2) this merged data structure
is built lazily from the scene graph using fast scanning techniques
[Hunt et al. 2006], and 3) the merged data structure stores grids
(small regular meshes) of vertices at its leaf nodes rather than stor-
ing individual triangle pairs.

4.2.1 Merged kD-trees

Figure 4 illustrates our kD-tree. The multiresolution capability is
provided within a single kD-tree by allowing each node to fill a
dual role: when traversed at a particular scale the node acts as a
leaf node containing geometry at that scale, but when traversed at
a finer scale the node acts as an interior node with a split plane and
child nodes. This multi-scale kD-tree is similar to that described
by [Wiley et al. 1997] for a multiresolution BSP tree, although our
system uses a hierarchical nesting of LODs whereas theirs used n-
ary LOD-selection nodes. Also, our approach does not restrict the
location of cut planes with respect to the geometry as theirs did.

The multi-scale kD-tree acceleration structure can be thought of as
numerous separate kD-trees, each built for a different discrete scale
pair, layered on top of each other. The leaves of a kD-tree built for a
single pair become a frontier of internal nodes in the combined tree.
If we set aside the laziness and use of hierarhcy for the building
process for now, the algorithm for building the tree is as shown in
Figure 5.

Our kD-tree data structure is specifically designed to utilize known
best practices for high-performance kD-tree traversal [Wald et al.
2001; Reshetov et al. 2005], including nearly identical SIMD
packet traversal code and an eight-byte internal node record. Rays
simply descend through the merged tree treating all nodes as in-
ternal (split) nodes until they reach either an empty leaf or a node
which is a leaf for the segment’s discrete level pair (i.e. from step 6
above). In short, the addition of multi-resolution capabilities does
not inhibit the use of current best practice approaches for fast traver-
sal.

4.2.2 Fast Construction

We use a variety of synergistic algorithmic approaches in order to
build our kD-tree structures quickly: lazy evaluation of scene graph
nodes, use of the scene graph hierarchy for build acceleration and
the fast scan approximation [Hunt et al. 2006] of the surface area
heuristic [Havran and Bittner 2002]. A fourth technique we use is
to build down to regular patches (igrids) instead of triangles. These
patches use their own, more regular, acceleration structure.

The idea of lazily tessellating and storing geometry has been used
for a long time. Arvo and Kirk lazily build a 5D acceleration struc-
ture for a ray tracer [Arvo and Kirk 1987]. The RenderMan inter-
face [Pixar 2000] supports a callback to user code for on-demand
generation of geometry within a bounding box at the needed reso-
lution, and there are now several ray-tracing implementations of the
RenderMan interface (e.g. [Gritz and Hahn 1996]). [Pharr and Han-
rahan 1996] builds displacement maps on demand in a ray tracer.

In addition to being desirable for efficiency in large or highly oc-
cluded scenes, laziness is required in order to support multireso-
lution geometry. Building out the entire data structure across the
entire range of interesting levels of detail would be prohibitively
expensive. Thus, our system builds its kD-trees lazily.

A node encountered in our tree during traversal may have been pre-
viously marked as “lazy”. Such a node has no children or geometry.
Instead, it has a pointer to a linked list of as-yet unprocessed nodes
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Figure 4: Multi-scale dynamic kD-tree. ‘SG’ designates a pointer into the scene
graph.

1. Create a root node for the kD-tree with the

scene bounding box and the scene graph root

node.

2. Set the current node to be the root.

3. Set the current discrete LOD level to be the

coarsest supported level.

4. Subdivide the geometry at the current node

until it satisfies the current discrete LOD

criteria.

5. Build out the kD-tree from this node until the

tree termination criteria are satisfied.

6. Retain the current geometry (these nodes are

effectively leaves for the current discrete

LOD level).

7. Set the current discrete LOD level to the next

finer level.

8. Goto 4. (unless termination reached)

Figure 5: Pseudo-code for building the kd-tree with-
out laziness

in the scene graph. These scene-graph nodes can be any node in the
scene graph: an original interior node, an original leaf node (base
patch), or a per-frame temporary node consisting of a sub-patch
produced by earlier subdivision and patch-splitting steps. The in-
formation in the lazy kD node’s linked list is sufficient to build the
missing portion of the kD-tree if it is needed. This mechanism is
similar to the one used by Ar et al to build BSP trees for collision
detection [Ar et al. 2002].

At the beginning of every frame, kD-tree construction is initialized
with a single root kD-tree node containing the bounding box of the
entire scene and a single pointer to the root of the scene graph. All
further kD-tree building is triggered by traversal operations during
ray tracing.

The second aspect of our fast tree build is to use the scene graph
hierarchy as an acceleration structure for the build process. Since
scene graph nodes may be used as proxies for large amounts of ge-
ometry, the kD-tree builder can be exposed to a significantly smaller
set of candidates when attempting to choose a split plane, dramat-
ically reducing the amount of work required to find a split. This
allows for the builder to quickly choose even the top level kD-tree
splits and removes the ”top heavy” property of traditional top-down
kD-tree builders. Additionally, the kD-tree builder can actively re-
fine scene graph nodes until it has enough candidates to choose a
good split.

The use of scene graph nodes as proxies also works to increase the
laziness of the system: if a ray does not hit a proxy, that proxy
doesn’t need to be refined.

As shown in the results section, although the kD-trees split planes
are chosen from a smaller set when using hierarchy, the efficiency
of the resulting tree is extremely close to the efficiency of a tree
built by choosing the planes from all geometry. In summary: the
use of hierarchy reduces tree construction time without noticeably
impacting tree quality.

The use of the fast scan approximation kD-tree build algorithm pro-
vides a rapid baseline build which is much faster than a sorting build
[Hunt et al. 2006]. This is particularly important if little or no hier-
archy exists in a scene, or if much of the world is visible, reducing
the effectiveness of the lazy build. This safety-net improves the
performance robustness of the builder across a variety of scenes.

4.2.3 Low-Level Grid Intersection Structures

In addition to the fast/lazy kD-tree builder, we organize geometry
into grids (small regular meshes) rather than individual triangles,
and the system also performs lazy evaluation at this granularity. A
kD-tree node that serves as a leaf node at a particular scale may
have the associated geometry marked as “lazy”. Such a node has
a linked list of geometry (patches and sub-patches), but the final
grid data structures have not been constructed yet. When such a
node is intersected, all of the final vertex data is computed. In ad-
dition, a simple bounding volume hierarchy is constructed based
on the internal structure of the tessellation. This low-level accelera-
tion structure obviates the need to compute several levels of kD-tree
splits at the bottom of the tree and takes advantage of the a-priori
knowledge that triangles within a patch have known connectivity
and are usually nearly co-planar. The grids are also important for
our shading model, for enabling features such as displacement map-
ping, and they improve the performance of the subdivision systems.

4.2.4 A note on efficiency

This lazy kD-tree-building mechanism is extremely effective. As
mentioned above, laziness is required in order to efficiently support
multiresolution geometry. What is less obvious is the fact that mul-
tiresolution and hierarchical clustering make lazy evaluation much
more effective.

Standard kD-tree build algorithms build top-down starting from the
full geometry description of the scene and the scene’s bounding
box. Unfortunately this leads to a situation analogous to sifting
through individual grains of sand to figure out where to split a beach
in half. The time to compute the single split at the root node is
linear in the amount of geometry in the scene. This is the case even
for an “optimal” n log n build algorithm [Wald and Havran 2006].
The kD-tree is heavily “top-loaded” in computational cost, greatly
impairing the benefits of lazy evaluation (you always touch the root,
obviously).

6



Online Submission ID: papers 0374

4.3 Split-phase shading

The design of our shading system was driven by the desire to decou-
ple shading from visibility. The REYES system [Cook et al. 1987]
accomplishes this goal, but in a system that only supports eye rays.
Our goal was to extend the REYES approach to a ray tracing frame-
work. Like REYES, our goal is to perform shading computations at
the vertices of a finely tessellated polygon mesh and then interpo-
late to specific hit points, rather than shading at the hit points them-
selves. The REYES algorithm has amply demonstrated the benefits
of this technique: shading calculations can be performed in highly
regular and coherent batches in their natural coordinate space on
the surface, and a variety of otherwise tricky operations (arbitrary
differential calculations, displacement shading) are simplified.

Another critical performance characteristic is that this technique
creates a separation between functions which can be band-limited
a priori from functions which cannot. In REYES, this means that
procedural shaders (expected to band-limit themselves) are sepa-
rated from visibility calculations. The extremely expensive proce-
dural shading operations can be performed less frequently, at the
vertices of the grid, while the cheaper-to-evaluate but ill-behaved
visibility function is super-sampled.

Our system uses this concept by leveraging the system’s multires-
olution representation of geometry. Shading is explicitly factored
into two phases. Operations in the first phase are performed at the
vertices of grids. The functions calculated in phase one are expected
to be band-limited to the frequency of the sampling implied by the
tessellation of the grid. Additionally, as the results are cached and
reused by the system, these values must be independent of viewing
direction. The first phase of shading is calculated lazily the first
time that a ray strikes the given grid and requires the results.

The second phase of shading is more typical of a ray tracer. When a
ray strikes a grid, the results of the first phase are fetched (following
lazy evaluation of the first phase if necessary) and interpolated to
the hit point. These values are available as parameters to phase two.
Shading in this phase is as flexible as shading in any typical ray
tracer. In typical use a BRDF function would be generated from the
results available from phase one, and distribution sampling of the
BRDF would be performed by casting secondary rays as necessary.

A similar split-phase shading model has been applied previously in
physically-based rendering systems [Pharr and Humpreys 2004] in
order to enforce properties such as BRDF reciprocity. The sepa-
ration in our system is more pragmatic and performance-oriented.
Shading operations should be factored into phase one as much as
possible, with the remainder in phase two, without necessarily con-
sidering physical interpretations. Creative abuse of the shading sys-
tem is certainly an option, such as using various mapping tricks in
either of the phases, or casting various physical-or-otherwise sec-
ondary rays in phase one. We have already experimented success-
fully with variants of irradiance caching based on casting rays in
phase one.

Altogether, there are four sources of performance improvement in
this shading system. First, redundant shading computations caused
by visibility super-sampling are reduced. Second, phase one is
performed on a grid, so that shading “derivative” computations
may be computed by discrete differences with neighbors, rather
than by executing the shader three times for each hit point as is
standard in ray tracers [Gritz and Hahn 1996]. Third, the grid
structure of phase one shading makes it amenable to acceleration
by SIMD mechanisms like x86 SSE. Grid-based shading also im-
proves memory-access locality. Fourth, the scheme improves the
efficiency of SIMD ray packets because there are fewer distinct
kinds of phase two shaders than kinds of combined shaders.

Our experimental system uses simple phase one shaders that read
and filter surface colors from a texture map and compute normal
vectors from a bump map. Our phase two shading currently in-
cludes area light source sampling, mirror reflection, hemisphere
sampling of ambient occlusion, and simple diffuse and Schlick
[Schlick 1994] BRDF evaluation. Shaders are written in C++
within our rendering system; we have not yet defined or imple-
mented a stand-alone shading language for this two-phase shading
scheme.

5 Results

We have evaluated our prototype system using several scenes, and
various rendering configurations which are described in Figure 6.

5.1 Overall system performance

We evaluate the overall performance of our system using a
workstation-class desktop PC running Windows XP Pro 64-bit edi-
tion. This PC has two Intel Xeon X5355 processors (2.66 GHz
with 1333 MHz FSB) and 16 GB of DRAM. Note that most of our
demos use only about 4GB of the DRAM.

Figure 6 summarizes performance for our scenes under various ren-
dering configurations. Rendering times at 1024x1024 take signif-
icantly less time per pixel than the 512x512 images. This is pri-
marily because the costs of building the acceleration structure are
amortized over more rays for larger images, but also because for
a given scene, rays become more coherent as image resolution in-
creases.

These results show that Razor delivers near-interactive performance
for scenes consisting of millions of visible micropolygons and hun-
dreds of thousands of base patches, even when many secondary rays
are cast.

Comparsion to Grid: We are not aware of any published perfor-
mance results for dynamic-scene ray tracing systems with a com-
bination of performance and functionality similar to Razor’s, so
is difficult to make precise performance comparisions with other
systems. The closest comparable system is Wald’s grid-based
dynamic-scene ray tracer [Wald et al. 2006]. Since Razor is de-
signed to be run with soft shadows enabled while the grid system
does not support this feature, we compare the two systems using
the metric of rays per second when each system is running in its
preferred configuration. For the Courtyard64 scene at 1024x1024
with 605K base patches, 24 million instantiated micropolygons and
72 rays/pixel, Razor traces 1.3 million rays/sec on a single Xeon
X5355 core.2 For other reasonable configurations on large scenes,
we have measured rates of up to 2.0 million rays/sec on a single
core. The grid system traces about 3.0 millon rays/sec on a 174K
triangle model with primary rays and hard shadows, on two 3.2
GHz Pentium 4’s. For ray tracing code, one Xeon X5355 core is ap-
proximately equal to two 3.2 GHz Pentium 4 cores. Thus, after ad-
justing for hardware differences, Razor’s performance as measured
in ray segments/sec is only slightly less than that of the dynamic-
scene grid ray tracer, even though Razor does substantially more
useful work. In particular, Razor tesselates to micropolygons, ro-
bustly handles large scenes, and traces diverging secondary rays.
Razor’s parallel scalability also seems to be better than that of the
grid system (see [Ize et al. 2006], end of Section 6).

2On eight cores, it traces 9.1 million rays/sec.
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Figure 6: Scenes used for evaluation and for the video. Unless specified otherwise, the specific frames illustrated by the thumbnails are used
to report results in other tables. The rendering times reported in this table are all on our dual Xeon X5355 2.66 GHz machine (8 cores total).
(*) The micropolygon and microvertex numbers are measured by rendering on a single core, since some duplication of micropolygons occurs
in multicore rendering.

We believe this comparsion actually understates the performance
potential of Razor. For rendering configurations with many sec-
ondary rays Razor spends most of its time in ray traversal, but Ra-
zor’s traverser is not yet as well optimized as those in other sys-
tems. Most importantly, Razor does not yet use frustum or interval
techniques [Reshetov et al. 2005], but we are confident that such
techniques could be integrated successfully.

5.2 Comparison to batch renderers

Razor supports features such as soft shadows and ambient occlusion
that have traditionally been associated with batch renderers rather
than interactive ray tracers. Figure 7 compares the performance of
Razor to that of Mental Ray, a fast batch renderer integrated with
the Maya 8.0 modelling package. Both rendering systems are con-
figured for the same image resolution, number of primary rays, and
number of secondary rays. Mental ray is configured to use scan
line rendering for primary rays (which is slightly faster in Men-
tal Ray than ray tracing the primaries), and ray tracing for all sec-
ondary rays. For these comparisons we used a PC with a dual-core
Pentium D 3.2 GHz processor, with hyperthreading disabled, and
4.0 GB of DRAM.

These experiments show that Razor is 3.6x to 7.3x faster than Men-
tal Ray for similar “batch quality” ray tracing settings, even though
Razor is an experimental system while Mental Ray is a highly-
optimized commercial rendering system that incorporates years of
performance tuning.

Comparisions between systems that are as different as these are
fraught with difficulties, but the key point is that the performance
of our experimental system already exceeds the performance of
the highly optimized rendering architectures used for batch render-

Figure 7: Performance comparision between Razor and a batch ren-
derer (Mental Ray) at high quality settings on a dual core Pentium D
PC. Both renderers are configured for 1024x1024 images, 16x su-
persampling, 96 shadow rays/pixel/light, two lights, and two pro-
cessing threads. Razor is configured for a maximum micropolygon
area of 2 pixels. The Courtyard64 scene uses planar subdivision
in Razor and no subdivision in Mental Ray while the Forest scene
uses Catmull-Clark subdivision in both renderers.

ing. We do not claim that Razor’s rendering architecture should
be adopted for batch rendering; rather, we believe that the require-
ments for interactive ray tracing systems are different from those
of batch renderering, and that these results show that Razor’s archi-
tecture is particularly appropriate for future interactive rendering
systems.

5.3 Fast build of acceleration structure

Razor’s rendering architecture combines several techniques to
rapidly build a high-quality acceleration structure for large scenes.

To evalute the effectiveness of these techniques, we measure the
changes in Razor’s performance as the various techniques are en-
abled and disabled. To keep this discussion as simple as possible
these measurements are made on a single core of our Xeon X5355
PC (that is, with Razor’s parallelism disabled). We decompose ren-
dering time into two components: build time and tracing time. Nor-
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mally these two kinds of computation are intermingled due to Ra-
zor’s on-demand build design, so we artifically separate them by
first measuring total rendering time, then measuring trace time by
re-rendering the same frame without deleting the on-demand data
structures. Build time is the difference between these two measure-
ments.

Figure 8 shows that Razor’s three build techniques for the kd-tree
combine synergistically to reduce build times. We report results for
a viewpoint with high-depth complexity and fewer visibible poly-
gons as well as results for a viewpoint with low depth complexity
and many visible polygons.

Lazy build skips portions of the scene graph that are not visible.
Hierarchical build uses scene graph bounding boxes as aggregate
stand-ins for the geometry they contain; eventually they are split
to insure an adequate number of candidate split planes. Scan build
uses an approach described in [Hunt 2006] to rapidly choose split
planes. This table reports single-threaded Xeon X5355 build and
trace times for two different frames in the Courtyard64 scene. To
focus on kd-tree build time, the “fast” rendering settings are used,
but with patch tesselation essentially disabled.

Figure 8: Courtyard 64 frame 230 is the viewpoint used in the first
teaser image. Courtyard 64 frame 460 is the viewpoint used in the
second teaser image.

5.4 Evaluation of per-ray geometric LOD

In Razor, each ray selects its own LOD for geometry intersections
and this LOD varies with the distance along the ray. One of the
main advantages of this mechanism is that for a particular surface,
shadow rays will often request an LOD that is substantially coarser
than that requested by primary rays hitting the same surface. This
improves the coherence of shadow rays, which in turn increases
packet occupancy and reduces the size of the memory working set.

Figure 9 illustrates a case where adaptive LOD makes a huge dif-
ference, especially when one considers the implications for fu-
ture hardware architectures. We compare the use of a fixed LOD
for this entire scene (set such that nearby objects are tesselated
correctly) with Razor’s standard per-ray adaptive LOD. The non-
adaptive LOD takes 50% longer to render, uses 15 times as much
memory, and – most importantly – increases the L2 cache miss rate
by a factor of 7.6. The primary cause of these differences is the
fact that the adaptive LOD algorithm can use a lower tessellation
rate for the soft-shadow rays hitting the off-screen wall that casts
the soft shadow in the forground.

On current hardware architectures, ray tracing is mostly floating-
point limited, so the penalty for non-adaptive LOD on these ar-
chitectures is relatively small (50% in this case). However, the
best way to improve the price-performance ratio of hardware for

a ray tracing workload is to add more cores by reducing the ratio
of cache to cores. On such machines, algorithms such as Razor’s
adaptive LOD that effectively manage the memory hierarchy will
have a huge advantage. Christensen et al [Christensen et al. 2003]
make similar arguments in support of their LOD mechanism, al-
though they are concerned primarily with DRAM capacity rather
than cache miss rates.

Figure 9: For this scene and
viewpoint, per-ray adaptive
LOD drastically improves
performance compared to a uni-
form tessellation of all surfaces
hit by rays. Adaptive LOD takes
92 seconds, uses 247 MB of
memory, and has 39,081 VTune
L2 cache-miss events. Uniform
LOD takes 139 seconds, uses
3,694 MB of memory, and has
298,377 cache-miss events.

5.5 Evaluation of shading at micropolygon vertices

One of the most aggressive design decisions in Razor is to shade at
micropolygon vertices rather than at ray hit points. The results pre-
sented in Figure 6 can be used to evaluate this approach. We focus
on the Forest scene, since most of its geometry was designed for
Catmull-Clark subdivision which is needed for the micropolygon
approach to work well. At “high” quality settings with micropoly-
gons targeted to be two pixels or less in area, the system shades
7.9 million microvertices during phase one of shading. Since the
supersampling rate for this one million pixel image is eight sam-
ples/pixel, Razor is shading slightly fewer points than a traditional
ray tracer would. However, as discussed earlier, this compari-
son understates the benefits of the micropolygon approach because
grid-based shading is more hardware friendly and provides differ-
ential information for free. Although additional analysis would be
useful to evaluate this particular design decision, we believe that
these results already demonstrate that the Reyes micropolygon ap-
proach can be usefully combined with a ray tracing visibility en-
gine. But for those who are skeptical of this approach, it is im-
portant to realize that Razor could easily be modified to shade at
hit points like a conventional ray tracer. In such a mode, the tes-
sellation rate would be reduced to the minimum rate necessary to
maintain the appearance of curved surfaces.

5.6 Parallel speedup

Figure 10 shows that for the balanced and high quality settings that
are Razor’s primary design point, Razor achieves parallel speedups
between 6.21 and 7.17 on an eight-core machine. At the “fast” qual-
ity settings, speedup is somewhat lower because a large fraction of
the total processing time at this quality setting is spent on building
the upper levels of the kd-tree (this work is done redundantly on
each core).

6 Related work

Our work builds on five major foundations: 1) The basic principles
of ray tracing and distribution ray tracing [Appel ; Whitted 1980;
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Figure 10: Razor achives parallel speedup of up to 7.17x on an
eight-core machine, with the best speedups at higher image quality
settings.

Cook et al. 1984; Igehy 1999], summarized nicely in [Pharr and
Humpreys 2004]; 2) The REYES system for efficient, high-quality
rendering of eye rays [Cook et al. 1987]; 3) Work on multiresolu-
tion ray tracing [Christensen et al. 2003; Christensen et al. 2006]
and related data structures [Wiley et al. 1997]; 4) Work on effi-
cient ray tracing acceleration structures [Havran and Bittner 2002;
Reshetov et al. 2005; Wald et al. 2001]; 5) Work on subdivision sur-
face representations [Catmull and Clark 1978; Halstead et al. 1993;
Biermann et al. 2000; DeRose et al. 1998].

In this section we compare various aspects of our system design to
alternative approaches.

6.1 Multiresolution Ray Tracing

There is relatively little previous work on multiresolution and LOD
techniques in ray tracing. The underlying technology to drive such a
system was laid down relatively recently [Igehy 1999; Suykens and
Willems 2001]. The most similar previous work is that described
in [Christensen et al. 2006]. This system is targeted at production
rendering, and in particular at avoiding virtual memory thrashing
during ray tracing. The ray tracing system operates as an extension
to a REYES scanline rendering system. The surface patches gen-
erated by REYES “splitting” provide a fixed partition of the scene.
Tessellation resolution for intersection of a given ray with a patch
from the partition is selected by comparing the ray’s differentials
to the size of the patch. Because the patch partition is fixed, and
the tessellation resolution for a patch is fixed for a given ray, the
tessellations that neighbor each other for a given ray can be stitched
together. This technique avoids the tunneling problem, but the LOD
selection for any given surface region and ray is dependent on the
partition of the scene produced by REYES, which may not be of an
appropriate granularity in the general case.

[Yoon et al. 2006] have developed a multiresolution ray tracing sys-
tem concurrently with ours. Their system targets massive static
models, focusing primarily on memory footprint reduction. It does
not make any guarantees about maintaining surface continuity.

6.2 Caching schemes for shading, irradiance, and
radiance

Razor’s mechanism for partially decoupling shading from visibility
has two characteristics: First, it interpolates values computed at
nearby points on the surface. Second, these values computed at
nearby points are computed on demand and reused; that is, they
are cached. Razor currently caches and interpolates just material
properties (i.e. the BRDF), although the architecture would easily
support caching of irradiance [Ward et al. 1988; Ward and Heckbert

1992] or a compact representation of radiance [Arikan et al. 2005],
and we have already begun to experiment with this capability.

Our caching and interpolation mechanism was inspired by REYES
[Cook et al. 1987]. REYES assumes a single viewing-ray direc-
tion, and thus can evaluate, cache, and interpolate the entire shad-
ing computation rather than just the BRDF. Both Razor and REYES
cache samples on a grid associated with the surface and use regu-
lar data interpolation. This explicit association of samples with a
surface neighborhood has the potential to facilitate a large class of
interesting optimizations. REYES explicitly generates and caches
results for just a single resolution of each surface, whereas Razor
can cache results for several several different resolutions of a single
surface. In both systems, each cached sample is associated with a
particular resolution and may thus be pre-filtered.

Irradiance caching [Ward et al. 1988; Ward and Heckbert 1992;
Tabellion and Lamorlette 2004] and radiance caching [Arikan et al.
2005] systems cache just irradiance or radiance, rather than caching
the results of the full shading computation. Photon mapping sys-
tems [Wann Jensen 2001] behave similarly. All of these systems
typically cache data as individual points in a global 3-D data struc-
ture such as an octree or kD-tree, and thus do not explicitly asso-
ciate cached points with a particular 2-D surface. This has both
the advantage and disadvantage that points from nearby surfaces or
from nearby patches on the same surface may be accessed during
retrieval, which is not done in our system. These systems also use
scattered data interpolation rather than regular interpolation, and
treat each sample as a true point rather than as a filtered sample
associated with a particular surface resolution as Razor does.

6.3 Ray tracing dynamic scenes

A variety of techniques have been proposed for ray tracing dynamic
scenes. We discuss these techniques in turn and compare them to
our approach.

For the special case of rigid objects, it is possible to pre-build an ac-
celeration structure for each object and transform rays into the ob-
ject coordinate system during ray tracing [Lext and Akenine-Moller
2001; Wald et al. 2003]. A top-level acceleration structure is still
required; some systems use a bounding volume hierarchy, and oth-
ers rebuild a complete top-level kD-tree every frame [Wald et al.
2003].

It is more difficult to efficiently support unstructured motion (also
referred to as non-rigid motion). Several systems rely on building
a complete kD-tree for these objects [Wald et al. 2003], but this
approach performs unnecessary work for occluded objects. It is
also possible to directly trace rays through the scene graph since
it is a bounding volume hierarchy, which may be used directly as
an acceleration structure [Rubin and Whitted 1980]. However, this
approach is less efficient than using a kD-tree for ray tracing accel-
eration.

Several systems [Torres 1990; Chrysanthou and Slater 1992; Rein-
hard et al. 2000; Luque et al. 2005; Wald et al. 2007; Lauterbach
et al. 2006; Woop et al. 2006] dynamically update an acceleration
structure rather than lazily rebuilding it each frame as we do. How-
ever, we believe that it is simpler and more efficient to lazily re-
build the tree, especially since it is difficult to guarantee that a kD-
tree remains optimized for traversal cost [Havran and Bittner 2002]
when it is incrementally modified. This restriction is less important
if it is known a-priori that motion will be restricted to known mo-
tions, such as certain motions of deformable characters [Wald et al.
2007].
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Several systems focus on building a complete acceleration struc-
ture extremely rapidly. Many of these systems [Wächter and Keller
2006] achieve this speed by avoiding the use of a surface area
heuristic. Generally speaking, the resulting acceleration structures
are not quite as effective as those built with a surface area heuristic,
resulting in increased trace times for irregular scenes and/or diverg-
ing secondary rays.

Two groups have concurrently developed similar techniques for
rapidly building a well-optimized kd-tree by making approxima-
tions that avoid a full sort of geometry [Popov et al. 2006; Hunt
et al. 2006]. We use this technique in our system, but augment
it with several other techniques. Similar fast-build techniques for
well-optimized acceleration structures have also been developed
concurrently for SKD-trees [Havran et al. 2006], which can be
thought of as a hybrid between a kd-tree and a conventional bound-
ing volume hierarchy.

Concurrently with our work, [Wächter and Keller 2006] use par-
tially lazy build for a bounding interval hierarchy, which is a close
relative of the SKD-tree.

Also concurrently with our work, [Boulos et al. 2006] present an
interactive distribution ray tracing system. They present improved
sampling patterns for distribution ray tracing, showing that it is
possible to achieve reasonable coherence for distribution secondary
rays. They do not provide performance measurements that are suf-
ficiently detailed to make a careful comparison with our system.

7 Discussion and Future Work

Razor’s high-level system architecture and algorithms are explicitly
designed for future interactive use, even though the performance
of our current implementation is not quite interactive at our target
image quality. Over the past year, we have improved Razor’s per-
formance by more than a factor of 50 through a combination of
algorithmic improvements, parallelization, and use of newer hard-
ware. Many of Razor’s subsystems are still not fully tuned, and we
expect to make substantial additional performance improvements
over the next six months.

Our experimental implementation current lacks several features that
the overall system architecture would easily support. Depth-of-field
would be easy to add and virtually free, just as it is in REYES. For
diffuse surfaces, it would be simple to cast hemisphere-sampling
secondary rays in phase one of shading, yielding a capability similar
to irradiance caching.

Our experimental system also lacks some useful features that would
require more effort to support, including motion blur and more ag-
gressive topology-modifying LOD.

Working within our system feels qualitatively different from work-
ing within any other ray tracing framework we’ve used. In particu-
lar, the notion that almost all operations are performed with respect
to a specific spatial scale is very powerful. For example, most “ep-
silon” values within our system are set relative to the current scale,
rather than to fixed global values.

8 Conclusion

We have presented a new software architecture for a dynamic-scene
ray tracer. The architecture represents surfaces at multiple resolu-
tions, integrates scene management with ray tracing, builds most of
its per-frame data structures lazily, and partially decouples shading

computations from visibility computations. The architecture is de-
signed to efficiently support the needs of distribution ray tracing,
including future interactive systems.

We believe that the goal of building an efficient distribution ray
tracer for dynamic scenes leads almost inevitably to a design using
principles similar to ours. Efficient support for distribution-sampled
secondary rays requires multiresolution surfaces, and efficient sup-
port for multiresolution surfaces requires a lazily-built acceleration
structure. Allowing shading operations to be performed on surface
neighborhoods is in many respects more natural than performing
them at intersection points.

The experimental system that we have built is not a product-quality
system, and in its current form leaves some questions partially
unanswered. However, our implementation clearly demonstrates
the potential of our system architecture by successfully integrating
a complex set of ideas into a single high-performance system.

We believe that many of the principles used in our system will be
important to the design of future interactive rendering systems, and
we hope that others in the graphics community can benefit from
learning about our ideas and the results from our experimental sys-
tem.
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WÄCHTER, C., AND KELLER, A. 2006. Instant ray tracing: The bounding interval

hierarchy. In Proceedings of the Eurographics Symposium on Rendering.

WALD, I., AND HAVRAN, V. 2006. On building fast kd-trees for ray tracing, and

on doing that in O(N log N). In Proceedings of the 2006 IEEE Symposium on

Interactive Ray Tracing, 61–69.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Interactive

rendering with coherent ray tracing. In Proc. of Eurographics 2001.

WALD, I., BENTHIN, C., AND SLUSALLEK, P. 2003. Distributed interactive ray

tracing of dynamic scenes. In Proc. IEEE symp. on parallel and large-data visual-

ization and graphics.

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. G. 2006. Ray

tracing animated scenes using coherent grid traversal. In SIGGRAPH ’06: ACM

SIGGRAPH 2006 Papers, ACM Press, New York, NY, USA, 485–493.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing Deformable Scenes

using Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics 1,

26.

WANN JENSEN, H. 2001. Realistic image synthesis using photon mapping. AK Peters.

WARD, G. J., AND HECKBERT, P. 1992. irradiance gradients. In Proc. 3rd Euro-

graphics Workshop on Rendering, 85–98.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A ray tracing solution

for diffuse interreflection. In SIGGRAPH ’88: Proceedings of the 15th annual

conference on Computer graphics and interactive techniques, ACM Press, New

York, NY, USA, 85–92.

WHITTED, T. 1980. An improved illumination model for shaded display. Communi-

cations of the ACM 23, 6 (June), 343–349.

WILEY, C., A. T. CAMPBELL, I., SZYGENDA, S., FUSSELL, D., AND HUDSON,

F. 1997. Multiresolution bsp trees applied to terrain, transparency, and general

objects. In Proceedings of the conference on Graphics interface ’97, Canadian

Information Processing Society, Toronto, Ont., Canada, Canada, 88–96.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU: a programmable ray

processing engine. In SIGGRAPH ’05: Proceedings of the 32nd annual conference

on Computer graphics and interactive techniques, ACM Press, New York, NY,

USA.

WOOP, S., MARMITT, G., AND SLUSALLEK, P. 2006. B-KD Trees for Hardware

Accelerated Ray Tracing of Dynamic Scenes. In Proceedings of Graphics Hard-

ware.

YOON, S.-E., LAUTERBACH, C., AND MANOCHA, D. 2006. R-lods: fast lod-based

ray tracing of massive models. Vis. Comput. 22, 9, 772–784.

12



Online Submission ID: papers 0374

Figure 11: Four images produced by Razor. Top-left: Courtyard64 balanced quality. Top-right: Forest balanced quality. Lower-left: Our use
of micropolygon grids enables displacement mapping. Lower-right: Forest ambient occlusion image, balanced quality with 8 occlusions rays
instead of 8 shadow rays per primary ray, 14.76 seconds per frame.
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