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Abstract

We introduce a straightforward, robust, and efficient algorithm
for rendering high-quality soft shadows in dynamic scenes. Each
frame, points in the scene visible from the eye are inserted into
a spatial acceleration structure. Shadow umbrae are computed by
sampling the scene from the light at the image plane coordinates
given by the stored points. Penumbrae are computed at the same set
of points, per silhouette edge, in two steps. First, the set of points
affected by a given edge is estimated from the expected light-view
screen-space bounds of the corresponding penumbra. Second, the
actual overlap between these points and the penumbra is computed
analytically directly from the occluding geometry. The umbral and
penumbral sources of occlusion are then combined to determine
the degree of shadow at the eye-view pixel corresponding to each
sample point. An implementation of this algorithm for the Larrabee
architecture yields from 27 to 33 frames per second in simulation
for scenes from a modern game, and produces significantly higher
image quality than other recent methods in the real-time domain.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible Line / Surface Algorithms

Keywords: real-time, soft shadows, shadow mapping, Larrabee

1 Introduction

Conceptually, the soft shadow computation consists of determining
the degree of illumination arriving at a point in the scene from an
area light. This value depends primarily on the spatial relationship
of the light and scene geometry, and properties of the light itself.
Specifically, the irradiance E from a diffuse area light incident on
a point with normal ~n (Figure 2a) can be expressed as an integral
over the area A of the light. In Equation 1, the term Φ(x) is the
intensity of the light at point x. The shape of the light determines
both n̂l(x) and the domain of integration A. Vector L(x) extends
from the receiver point to x.

E =

Z
x∈A

(n̂ q L̂(x))(n̂l(x) q − L̂(x))
Φ(x)

|L(x)|2 V (x)dx (1)

Many common light sources have nearly constant values for n̂l

as well as Φ. Furthermore, if the light is small (also common)
then L is nearly constant, and both of the dot products as well
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Figure 1: Our soft shadow algorithm applied to a saloon scene
from Call of Juarez by Techland. To emphasize the quality of the
shadow penumbrae, no antialiasing, texture mapping, or complex
shading is performed. Scene is used with permission.

as the distance term 1/|L(x)|2 can be moved outside the integral
(Equation 2), leaving only the visibility term V (x). This term is
largely responsible for the visual appearance of shadow penumbrae,
but is also the most difficult to compute, requiring a search over the
scene geometry to identify occluders.

E ≈ (n̂ q L̂)(n̂l
q − L̂)

Φ

|L|2

Z
x∈A

V (x)dx (2)

The primary contribution of this paper is a new method for
computing the visibility term of Equation 2 that is high quality,
efficient, robust, and straightforward to implement. Our algorithm
is based on two principles. First, accuracy and efficiency favor
computing light-view visibility only at, and exactly at, points in the
scene visible from the eye. Second, this occlusion computation can
be split into umbral (i.e. a point is fully occluded) and penumbral
(a point is partially occluded) parts. This allows us to restrict the
relatively costly penumbral computation to points near silhouettes.

A key property of our approach is that points in the scene visible
from the eye are stored in an irregular spatial acceleration structure
in light space. The storage order of these points is determined at run
time based on their relative positions. High performance per-frame
construction and traversal of such data structures requires efficient
scatter / gather memory operations, global atomic operations, and
synchronization. The Larrabee architecture due in 2009 or 2010
[Intel Corporation 2008] is one example of a processor with these
features. Through simulation on this architecture, we find that the
performance of our algorithm is comparable to the best performing
existing methods, but produces substantially higher image quality.



(a)  Data structure construction. (b)  Computation of umbrae. (c)  Coarse penumbra computation. (d)  Final penumbra computation.
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Figure 2: Soft irregular shadow mapping occurs in four steps. The scene is rendered from the eye and the visible points (i.e. receiver points)
are inserted into a spatial acceleration structure (a). Umbrae are determined by projecting scene primitives into the light-view image plane
and testing for overlap with the image plane coordinates (p) of the points in this data structure (b). Penumbrae are computed in two steps.
The first estimates the light-view screen-space bounds of the penumbra cast by a silhouette edge (c). For each point located inside these
bounds, a more accurate visibility test is performed. Here, the occluding surface is clipped to the bounds of the area light as seen from
the receiver point, and the fractional area of occlusion is measured (d). The umbral and penumbral sources of occlusion are combined to
determine the amount of shadow at the eye-view pixel corresponding to each receiver point.

2 Algorithm

Conceptually, the computation of penumbral occlusion consists of
determining the area of the light occluded by geometry as seen from
a receiver point. For a light of uniform intensity, occlusion can
be found in 2D by projecting the light and occluder into the light-
view image plane and measuring the area of overlap. Our algorithm
does exactly this, and combines the result with umbral occlusion
computed via hard irregular shadow mapping [Johnson et al. 2004;
Aila and Laine 2004]. As with all other soft shadow algorithms in
the real-time performance regime ours is approximate. However,
the errors introduced are commonly imperceptible.

The complete algorithm is illustrated in Figure 2. First, receiver
points are identified by rendering scene geometry from the eye (a).
The points are sorted by their light-space coordinates, and inserted
into the spatial acceleration structure shown in Figure 3. Second,
umbral occlusion is computed by projecting scene geometry into
the light-view image plane (b). Each primitive is tested for overlap
against the receiver points stored in the data structure. Third, a
coarse penumbral occlusion computation is performed (c). Here,
the set of receiver points affected by a given silhouette edge is
estimated by testing the points for overlap against a “penumbra
quad”. The quad represents the expected light-view screen-space
bounds of the penumbra cast by the edge. Fourth, a more accurate
penumbral occlusion computation is performed for each point
covered by a quad (d). The area of overlap between the silhouette
geometry and the light-view image plane projection of the light
(as seen from the point) is measured. The silhouette contributes
positive occlusion in the case of an outer penumbra, and negative
occlusion in the case of an inner penumbra. Finally, the umbral
and penumbral occlusion accumulated at a receiver point is used to
modulate the intensity of the corresponding eye-view pixel.

2.1 Silhouette Edge Detection

The identification of silhouette edges on modern graphics hardware
is straightforward. For example, the DX10 API [Blythe 2006]
exposes vertex adjacency information which can be used within
a geometry shader to identify silhouettes. Though identification
of silhouettes improves the performance of our algorithm, doing
so is not necessary for correctness. In the absence of adjacency
information we assume all edges are silhouettes. The composition
of umbral and penumbral occlusion discussed in Subsection 2.4
ensures correctness is preserved.

2.2 Silhouette Edge Representation

Note that the penumbra cast by a silhouette edge forms a wedge as
seen in Figure 2c. The projection of this wedge into the light-view
image plane can be (conservatively) represented as a rectangle. As
a result, the “penumbra quads” used during the coarse visibility
test in our algorithm are rectangular and coplanar to the light-view
image plane. The width of a quad depends on the light radius, the
minimum depth of the silhouette edge, and the maximum depth
of any receiver point occluded by the surface adjacent to the edge
[Parker et al. 1998]. Unfortunately, the maximum receiver depth
cannot be accurately determined prior to computing a complete
visibility solution. Therefore, this value is initially set to the
maximum light-view depth of any receiver point in the scene and
later refined (Subsection 2.5).

2.3 Penumbral Occlusion

To review, occlusion from a spherical light of uniform intensity can
be determined by projecting the light and occluding silhouette edge
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Figure 3: Conceptually, our light-view spatial acceleration
structure is a 3D perspective grid where each cell stores a list
of the samples within the cell bounds. This data structure is
irregular in the number of samples per cell. Range queries can
be performed by rasterizing scene primitives or penumbra quads
to the frontmost face (i.e. image plane). In memory, samples
are stored contiguously in a separate 1D array. The storage
order of samples in this array is such that samples from celln+3

immediately follow those from celln+2 in memory, which in turn
follow those from celln in memory (since celln+1 contains no
samples). This design exposes spatial reuse of samples on the
same cache line, and maximizes the efficiency of vector memory
operations during computation of occlusion.

into the light-view image plane, and measuring the area of the light
footprint clipped by the edge. This clipping strategy (Figure 4)
avoids penumbral aliasing often found in methods which measure
occlusion at discrete points on the light surface. The radius (R ) of
the light footprint is estimated from the radius of the actual light, the
depth of the receiver point (p), and the depth of a point (q) on the
silhouette edge nearest p. A negative value indicates the silhouette
geometry is further from the light than the receiver point and no
occlusion is possible. For positive values of R, the normalized area
of the minor circular segment clipped by the silhouette edge (shaded
area) is computed from Equation 3. The sign of the dot product of
the edge equation and p determines if the result is added (i.e. p is
outside the edge) or subtracted (p is inside the edge) from the total
occlusion accumulated at the receiver point.

θ = cos−1

 
d2 − w0w1p

(d2 + w2
0) (d2 + w2

1)

!

Ṽ ′′ =
± θ − d (w0 + w1)

2π
(3)

This strategy of determining penumbral occlusion by measuring the
area of overlap between a light and silhouette geometry is not new.
For example, Assarsson et al. [Assarsson et al. 2003] describe an
occlusion kernel for spherical lights similar to ours, though the
method of computation is different. In our algorithm, an inverse
cosine function call is used in place of a table of inverse tangent
values. The latency of the function call can be higher than that
for the table lookups if the entries are in cache, but the increased
accuracy inhibits penumbral banding. Further, in our algorithm the
clipping operation is performed in 2D and so avoids evaluating the
quadratic equation used in intersecting a line with a cone in 3D.
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Figure 4: A silhouette edge (red) and adjacent surface are clipped
to the bounds of a 2D projection of the light (enclosing circle). The
radiusR is computed from the light radius and the light-view depth
to the point (q) nearest p on the silhouette edge. The signed and
normalized area of the minor circular segment defined by the edge
(yellow) is computed with Equation 3. This method is accurate even
when one or both edge vertices lie inside the sample bounds.

The computation of penumbral occlusion using a spherical light
is motivated by the relative simplicity of the calculation which
results from the radial symmetry of this shape. However, the
overall algorithm is not restricted to spherical lights. For example,
Assarsson et al. describe an occlusion kernel for rectangular lights
[Assarsson et al. 2003], which can be used with our algorithm.
In general, any function which returns the amount of occlusion
given a silhouette edge and receiver point can be used, though the
performance of the overall algorithm is dominated by this kernel.

2.4 Composition of Occlusion

The visibility function at a given receiver point cannot be accurately
reconstructed from penumbral occlusion alone [Laine et al. 2005],
since this computation is only performed for silhouette edges that
pass within a distance of R of the point. Occlusion due to surfaces
which fully cover the light as seen from the receiver point (i.e.
umbral occlusion) is unaccounted for. Since umbral occlusion is
constant for all points on the light it can be measured from a
single point anywhere on the light surface using a hard shadow
algorithm. We do so via hard irregular shadow mapping [Johnson
et al. 2005]. However, this algorithm is modified slightly to measure
the total depth complexity between a receiver point (p) and the
light. Combined with the penumbral occlusion as in Equation 4, the
result forms a complete solution to the visibility term of Equation 2.

Z
x∈A

V (x)dx ≈1−
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umbra penumbra

(4)

2.5 Optimizations

A source of inefficiency in many rasterization-based soft shadow
algorithms is overdraw. Here, overdraw refers to the unnecessary
computation of penumbral occlusion at receiver points, and occurs
when an edge is tested for occlusion against a point but is found not
to occlude the point. Overdraw is difficult to address since it stems
from a circular dependence in the penumbral occlusion calculation.
This calculation is expensive and should be performed only where
needed, but the set of receiver points affected by a given silhouette



edge cannot be accurately determined without performing this
calculation. In our algorithm, a coarse visibility test reduces
overdraw by estimating the spatial relationship between silhouette
edges and receiver points. During this test, the expected light-view
screen-space bounds of the penumbra cast by a silhouette edge is
represented by a quad. Each quad must be wide enough to occlude
all receiver points potentially affected by the respective edge, but
overestimation of the width can result in significant overdraw.
Unfortunately, this width cannot be accurately pinpointed until a
complete visibility solution is computed, as it is proportional to
the maximum depth of any object occluded by the silhouette. The
width is bounded by the maximum light-view depth (Z) of any
receiver point, but this bound is insufficient to avoid substantial
overdraw.

We address this problem with two simple optimizations. One
uses hierarchical depth information accessed through the Larrabee
rasterization pipeline to reduce overdraw in the light-view image
plane. The Larrabee rasterizer is a “sort-middle” design [Seiler,
Carmean, et al. 2008]. Geometry is sorted into screen-space bins,
and rasterization proceeds bin by bin. The width of a penumbra
quad is initially computed from Z, and is recomputed during
sorting using the maximum receiver depth in each bin (measured
during data structure construction). If the quad no longer overlaps
the bin it is not included in the bin geometry list. The second
optimization reduces overdraw in the image plane and in depth,
during rasterization. Observe that the penumbra cast by a silhouette
edge forms a wedge (Figure 2c). Samples outside of this wedge are
not in the penumbra. Therefore, for each fragment from a penumbra
quad, we compute the intersection between the wedge due to the
penumbra represented by the quad, and the column of grid cells
under the fragment. Final visibility (Equation 3) is only computed
for samples at this intersection point and deeper in the grid.

2.6 Asymptotic Behavior

Table 1 illustrates the sensitivity of our algorithm to changes in eye-
view image resolution, number and coverage of scene primitives,
number of silhouette edges, and area light radius.

Image Resolution

Recall that there exists a single light-view sample per eye-view
pixel. Soft irregular shadow mapping is linear in the number of
eye-view pixels and hence in the number of light-view samples. In
principle, construction of a spatial acceleration structure requires
sorting the coordinates of the elements to be stored (in this case
samples). In practice, our data structure consists of a grid in which
the samples within a given cell are unordered. This partial sort
can be performed in O(n) time rather than the O(n logn) time
required for a full sort. Similarly, the hard and soft shadow kernels

n Data Structure

Construction

Hard Shadow

Kernel

Soft Shadow

Kernel

image resolution

scene geometry

silhouette edges

area light radius

O (n)

O (n)

--

--

O (n)

--

--

--

O (n)

--

O (n)

O (n 

2)

Table 1: The asymptotic performance of our algorithm is shown in
relation to several scene-specific properties. Recall that the number
of light-view samples is equal to the number of eye-view pixels,
and the scene primitives and silhouette edges are used only in the
computation of umbral and penumbral occlusion respectively.

consist of point sampling or area sampling geometric primitives.
This operation is constant per sample per primitive, and thus occurs
in linear time overall.

Scene Geometry

The performance of our algorithm depends in part on the number
and light-view image plane extents of primitives composing the
scene. This geometry is used only in the computation of umbral
occlusion, and does not play a role in data structure construction or
in the calculation of penumbral occlusion. During the computation
of umbral occlusion, the geometry is projected into the light-view
image plane and tested for overlap against the sample coordinates
stored in the data structure. This point-in-primitive test is linear in
the average depth complexity of the scene.

Silhouette Edges

Soft irregular shadow mapping generates a penumbra quad per
silhouette edge, representing the expected light-view screen-space
bounds of the penumbra cast by the edge. The computation of
penumbral occlusion consists of testing these quads for overlap
against the sample coordinates stored in the data structure, and
calculating an area sample (Subsection 2.3) at each overlapped
point. This computation is constant per sample per quad, and thus
the total work is linear in the number of silhouette edges.

Area Light Radius

Though the performance of the penumbral occlusion computation
is linear in the number of penumbra quads, the light-view screen-
space extents of these quads are quadratic in the radius of the area
light. A light with twice the radius of another, produces penumbra
quads that occupy four times the area in the light-view image plane.
This quadratic can be problematic in scenes with very large light
sources and is an issue common to soft shadow algorithms based
on shadow geometry or shadow mapping. However, the size of a
penumbra (and thus extents of the penumbra quad) also depends on
the distance of the occluding object from the light. Many common
light sources are either large and distant (e.g. sun) or small and
comparatively near occluding geometry (light fixture in a room).

3 Architectural Support

Our algorithm utilizes a non-uniform spatial acceleration structure
in which the storage order of member elements is determined at run
time. Specifically, the light-space coordinates of receiver points are
sorted such that spatial locality is maximized (Figure 3). However,
efficient construction and traversal of this structure requires high-
performance scatter / gather memory operations, global atomic
operations, and global synchronization. The Larrabee architecture
due in 2009 or 2010 [Intel Corporation 2008] is one example of a
processor with these features. We briefly review this design here.

3.1 The Larrabee Architecture

The Larrabee architecture is illustrated in Figure 5. Shown are a
small number of fixed-function units for specialized operations like
texture filtering, memory controllers, a large on-chip L2 cache, and
multiple programmable cores, joined by a ring-based interconnect.
The programmable core is derived from the Intel Pentium® line
of CPUs. As such, it is multithreaded and supports 32 and 64-
bit integer and floating scalar point arithmetic as well as the Intel
Pentium x86 instruction set, but is different from a modern CPU in
its short in-order instruction pipeline. Die area normally occupied
by out-of-order control logic is instead devoted to 16-wide SIMD
units. These units support 32-bit integer and 32 and 64-bit floating



L2 cache

• • •

interconnect

• • •

fixed

function

units

x86 corex86 core x86 core x86 core

x86 corex86 corex86 corex86 core

interconnect

memory

I/O
• • •

Figure 5: The Larrabee architecture is a scalable, multi-core de-
sign. A large coherent cache structure and flexible interconnect
support efficient global atomics and scatter memory operations.
These in turn enable efficient construction and traversal of irreg-
ular data structures in which the storage order of member elements
is determined at run time, as required by our algorithm.

point arithmetic, conditional execution via vector element masking,
simple vector load / store memory operations, and scatter / gather
memory operations. The scatter / gather operations load or store
up to 16 data values from non-contiguous addresses specified by a
secondary source vector operand.

The Larrabee memory hierarchy is fully cache coherent and
consists of a per-core L1, large L2 partitioned across cores, and
off-chip memory accessible through on-chip controllers distributed
around the ring interconnect. L1 is shared among threads of the
same core. Data sharing between cores is enabled by hardware-
assisted communication across L2 partitions. All vector memory
instructions operate through cache.

4 Performance Evaluation

Comparing the performance of our algorithm with that of existing
methods on other architectures is challenging. As of this writing,
porting other algorithms to Larrabee is difficult due to the prototype
nature of the software tool chain. Alternatively, published results
for other algorithms could be normalized against Larrabee based on
peak FLOPs or another metric. However, such scaling is dubious
as Larrabee is a radically different architecture in the design and
performance of its fixed-function units, programmable cores, ISA,
interconnect, and memory hierarchy. Instead, we report competing
results as published. As guidance on interpreting these results we
note that the peak FLOPs of the Larrabee configuration simulated
is within a factor of 2 of recent GPUs. Further, any bias in favor of
Larrabee is substantially reduced by our use of a prototype compiler
and software rasterization pipeline. Neither is fully optimized.

4.1 Simulation Environment

Our simulation infrastructure has three parts. The first is a reference
implementation of hard and soft irregular shadow mapping written
in C/C++. In addition to the routines specific to our algorithm,
the code contains a functionally complete (but unoptimized) Z-
buffer graphics pipeline capable of rendering a colored, shaded,
and shadowed image from a scene specification. This code permits
rapid evaluation of image quality and algorithmic correctness,
and coarse performance estimation (e.g. operation counting, raw
memory bandwidth measurements). Additionally, the data structure
construction and hard and soft shadow kernels from this code have
been hand vectorized and multithreaded using Larrabee intrinsics.
The results presented below derive from the execution of this code
on the Larrabee hardware simulator.

The second simulation component is the Larrabee software rasteri-
zation pipeline. Its key features include: multithreading with min-
imal locking, vectorization, and a “sort-middle” pipeline structure
[Seiler, Carmean, et al. 2008]. When run on the Larrabee hardware
simulator, this code provides insight into the performance of classi-
cal rasterization from the light, as required for the coarse visibility
solution used by our algorithm. Since this code remains under de-
velopment at Intel, no effort has been made to integrate it with the
reference implementation of our algorithm.

The third simulation part is the Larrabee hardware simulator
itself. It descends from validated, cycle-accurate simulators used in
designing Intel multi-core CPUs. Different chip configurations can
be modeled. The number of cores, threads per core, and clock rate
are adjustable, as are properties of the memory hierarchy. The core
count and clock frequency of the actual Larrabee hardware have not
yet been announced. Therefore, we simulate a conservative chip
configuration with 24 cores at 1 GHz.

4.2 Results

Table 2 illustrates the hard and soft shadow performance of our
algorithm for the scenes in Figure 6. The palm and fern scenes
provide a basis for image quality and performance comparisons
with several existing hard [Lefohn et al. 2007] and soft [Annen
et al. 2008; Fernando 2005; Guennebaud et al. 2006; Schwarz
and Stamminger 2007] shadow algorithms. These algorithms are
state-of-the-art in image quality and performance, and are widely
cited in the literature. Our test suite also includes scenes from
a modern game. These scenes represent two environments with
very different light-geometry relationships. The street scene is an
exterior environment lit with a single light source positioned far
from the geometry composing the scene, and is challenging for our
algorithm due to the large number of silhouette edges. The saloon
scene is an interior environment lit with a single light that sits
within the eye-view frustum and is comparatively near the geometry
composing the scene. This scene is a challenging case due to the
size of the light relative to its average distance from the geometry,
resulting in wide penumbrae as seen from the eye.

The times reported for our algorithm do not include the cost of
eye-view color, depth, or shading. These costs are well understood
and are expected to be comparatively small. Similarly, the cost of
two geometry shaders and screen-space binning [Seiler, Carmean,
et al. 2008] used in light-view rasterization are not included due
to a dependence on features not present in the prototype software
graphics pipeline used. The geometry shaders identify silhouette
edges and generate a penumbra quad for each. The cost of both
is expected to be small. For example, silhouette edge detection
requires at most one cross product and one dot product per edge
using adjacency information provided by DX10 [Blythe 2006], and
only for triangles which pass face culling and frustum clipping.

In the hard shadow case, our algorithm achieves image quality
comparable to adaptive shadow mapping [Lefohn et al. 2007], at
real-time frame rates, using only a single light-view sample per
eye-view pixel. In the soft shadow case, the performance of our
algorithm is interactive and is within a factor of two of all but
backprojection soft shadows [Guennebaud et al. 2006]. However,
the image quality of our method is significantly higher than that
of backprojection, percentage closer [Fernando 2005], bitmask
[Schwarz and Stamminger 2007], and convolution [Annen et al.
2008] soft shadows, and is comparable to distribution ray tracing
(Figure 7). Our algorithm computes shadow penumbrae directly
from silhouette geometry at exactly the points in the scene visible
from the eye. As a result, the images are free from artifacts due to
undersampling a discretized representation of the scene (i.e. shadow



(d)  Saloon (Call of Juarez).(c)  Street (Call of Juarez).(b)  Fern [Annen et al. 2008].(a)  Palm [Lefohn et al. 2007].

Figure 6: The four scenes evaluated in our performance analysis. The image quality and run time of our algorithm is compared against those
of existing state-of-the-art approaches, using the first two scenes. The third and fourth are used to illustrate the performance of our algorithm
in scenes from an actual game. These scenes are from Call of Juarez and are used with permission from Techland.
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1024 x 1024

800 x 600

1600 x 1200

1600 x 1200

Total

Frame Rate

40 fps
60 fps

27 fps

23 fps
18 fps
41 fps
19 fps
15 fps

33 fps

-- 
11.4 ms  (69%)

Table 2: Simulated performance for our algorithm (denoted in gray) on the Larrabee architecture with 24 cores at 1 GHz, for the scenes from
Figure 6. Times for the major phases of the algorithm are reported individually, along with the percentage of the total render time represented
by each. These percentages do not sum to 100% due to the additional cost of classical rasterization from the light. Total frame rates are also
shown for our algorithm. Not included in these results are the cost of eye-view color, depth, or shading. Finally, published data for five other
methods measured on a NVIDIA 8800 GTX part are shown for comparison. Though our soft shadow results are preliminary, they are within
a factor of 2 of all but one other method. Moreover, our algorithm yields significantly higher image quality (Figure 7) than any other method.

map). For example, convolution-based methods can omit umbrae in
cases when an occluder is near a receiver (Figure 7c). This is due to
the use of an average occluder depth at each receiver point, and the
loss of frequency content resulting from the use of a low-precision,
pre-filtered shadow map. In contrast, our algorithm simultaneously
captures high-frequency shadow details and smooth, low-frequency
penumbrae. Our method is approximate (Section 5), but the errors
introduced are not widespread and are commonly imperceptible.

5 Approximations

As of this writing it is impractical to solve the visibility integral
from Equation 2 analytically with high performance. To achieve
real-time frame rates in dynamic scenes it is generally understood
that approximations must be made. The space of possible approxi-
mations can be loosely bisected: those that may yield objectionable
artifacts (e.g. light leaks, aliasing), and those that yield plausible but
inaccurate results. Approximations of the first type typically allow
the balance between image quality and performance to be tuned.
Unfortunately, the computation required to achieve a given level of
image quality depends on the spatial relationship between the eye,
light, and geometry. In dynamic scenes this relationship is often
unknown a priori, leading to unpredictable results. For this reason,
we use approximations of the second type. These often yield more
modest performance gains, but require no tuning and offer better

error bounds. Our algorithm uses two: single point of projection
and independent evaluation of occluders. The visual impact of each
is summarized here and explored further by Johnson [2008].

5.1 Single Point of Projection

The visibility term of Equation 2 is often estimated by determining
occlusion from one point (rather than many) on the surface of
an area light. In actuality, the view of an occluder varies from
point to point across the light surface tracing out a penumbra on
a more distant object. The magnitude of this parallax effect can be
estimated heuristically, as is done here. The value is proportional to
the width of the penumbra cast by one object onto another, which
is itself the ratio of the distances from the light to the occluder and
the light to the object in shadow [Parker et al. 1998]. This estimate
is widely used in place of computing visibility from multiple points
on the light, as the error is not significant or objectionable even
when the light is large relative to occluders.

However, there is a second effect due to parallax in which hidden
silhouette edges become visible as seen from different points on
the light [Assarsson et al. 2003]. The contribution of these edges
can impact the shape of the penumbrae and the apparent size of the
umbrae cast by the object, but cannot be estimated effectively from
only a single point on the light. The resulting error is seen primarily



(a)  Ray traced shadows. (b)  Irregular shadow mapping. (c)  [Annen et al. 2008].

Figure 7: The image quality produced by ray tracing (a), our algorithm (b), and Annen et al. (c) compared. The inset highlights a region
that is challenging for many algorithms to render accurately. A key feature of irregular shadow mapping is the high quality of the umbrae
and penumbrae and the seamless transition between the two. The resulting images compare favorably with those produced by a ray tracer,
simultaneously capturing high-frequency shadow details and smooth, low-frequency penumbrae. This result can be examined against that
of backprojection, bitmask, and percentage closer soft shadows through Figure 7d - f of Annen et al. 2008. The image in (c) is generously
provided by Thomas Annen and is used with permission.

as umbrae which are reduced in width, with correspondingly larger
penumbrae, and no high-frequency or other objectionable artifacts
are introduced. The incidence of this error can be reduced by
incorporating visibility information from multiple points on the
light surface. For example, Assarsson et al. represent a single large
area light as a collection of smaller lights [Assarsson et al. 2003].
This strategy is likewise compatible with our algorithm.

5.2 Independent Evaluation of Occluders

Many soft shadow algorithms evaluate the visibility term from
Equation 2 per-occluder. However, these partial visibility terms are
not independent, leading to a loss of information on the degree of
overlap between occluders. Thus, the total accumulated occlusion
is overestimated by an unknown amount C as shown in Equation 5.
Here, Ṽ (objecti,x) is 1 when a point on the light x is occluded by
object i and 0 otherwise, and Ṽ (objecti,x) = 1 − V (objecti,x).
It is expensive to accurately compute the value of C. Doing so
requires clipping an incoming occluder to an arbitrarily-shaped
silhouette representing the composition of prior occluders. Bitwise
coverage masks can simplify this clipping, but at the cost of
introducing aliasing into the penumbrae [Schwarz and Stamminger
2007]. In practice, algorithms typically approximate C. This value
is bounded by 0 (i.e. no occluders overlap) and the sum of the
area of all but the largest occluder (occluders maximally overlap).
Some algorithms compute the average overlap between occluders
[Assarsson et al. 2003] while others use the maximum [Haines
2001; Wyman and Hansen 2003; Chan and Durand 2003].

Z
x∈A

V (x)dx = 1−

240@ NX
i=1

Z
x∈A

Ṽ (objecti,x)dx

1A− C
35 (5)

Our algorithm assumes C = 0 (i.e. no occluders overlap). This
approximation is fast to compute and accurate in many common
cases. It is approximate only when two or more partially-occluding
surfaces overlap within the area sample (i.e. the actual value of C
is greater than 0). Even here, no visually objectionable artifacts
are introduced. Estimated penumbrae are continuous and visually
pleasing, but are biased towards darker values. In the limit, a
penumbra of zero width can result, but this extreme case requires
a large number of silhouette edges to be (nearly) colinear after
projection into the light-view image plane, and is infrequent.

6 Further Related Work

The approximations discussed above are part of a larger space of
solutions for solving the visibility integral of Equation 2. This
space can be structured according to methods for approximating the
domain of integration, and methods for computing the integrand
V . Interactive soft shadow algorithms employ a combination of
methods, and differences in operation and performance, and image
quality (Table 3) derive from the specific set used. Our soft
shadow algorithm is distinguished primarily in the method used to
determine V . The algorithm does not determine occlusion from
the light in eye space using shadow geometry1, or a discretized
representation of the scene geometry (i.e. shadow map). Rather,
receiver points are stored in a light-view spatial acceleration
structure, and occlusion is computed at these locations in light space
directly from the scene geometry.

6.1 Restricted Light Geometry

Observe that many sources of light in the real world (e.g. sun,
incandescent bulbs, fluorescent fixtures) are simple shapes with
symmetry, and the visual impact of light shape on penumbrae
is subtle. As a result, area light sources are frequently defined
as planar rectangles or discs. For rectangular lights, a simple
linear parameterization can be used to obtain a uniform distribution
of samples across the light surface [Laine and Aila 2005; Laine
2006; Agrawala et al. 2000]. Soft shadow algorithms that employ
bilinear [Eisemann and Décoret 2006] or percentage closer filtering
[Fernando 2005] to estimate penumbrae from umbral silhouettes,
implicitly assume a square or rectangular area light due to their use
of square or rectangular filter kernels. Disc-shaped lights mimic
omnidirectional spheres of constant intensity [Brabec and Seidel
2002; Haines 2001], and produce a sinusoidal intensity falloff
which can be approximated with a Bernstein cubic interpolation
function [Parker et al. 1998; Wyman and Hansen 2003; Chan
and Durand 2003]. The simplicity of the circle also enables
fast analytic integration of occlusion resulting in high-quality
penumbrae (Equation 3).

1Light-space penumbra quads are used to determine a coarse solution for
V . However, the final visibility computation employs no shadow primitives.
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[Agrawala et al. 2000]

[Annen et al. 2008]

[Assarsson et al. 2003]

[Bavoil et al. 2006]

[Brabec and Seidel 2002]

[Chan and Durand 2003]

[Eisemann and Décoret 2006]

[Fernando 2005]

[Guennebaud et al. 2007]

[Haines 2001]

[Johnson et al. 2009]

[Ren et al. 2006]

[Schwarz and Stamminger 2007]

[Soler and Sillion 1998]

[Wyman and Hansen 2003]

[Zhou et al. 2005]

´´

Table 3: The visual qualities of several soft shadow algorithms is compared. Ours is marked in gray. Accuracy is loosely proportional to
the number of check marks. The absence of a check in a plausible but inaccurate column indicates the algorithm yields plausible-looking but
potentially incorrect penumbrae, while the absence of a check in an noticeably implausible column denotes the potential for objectionable
artifacts. Penumbrae are divided into inner and outer regions by the hard silhouette of an object. The lack of either yields penumbrae which
are misaligned and too narrow. Accurate Overlap denotes accurate computation of the area of overlap between occluders. Inaccuracies
here commonly result in a bias towards darker penumbrae. Alias-free algorithms produce no sawtooth or banding patterns, or flickering
in penumbrae during object-light motion. Light leaks appear as intensity discontinuities in otherwise unbroken regions of shadow. All-
frequency algorithms do not impose artificial bounds on the frequency content of illumination via undersampling in frequency space, or via
prefiltering of undersampled depth (i.e. shadow) maps. Many algorithms reduce the incidence of these artifacts using various means, but do
not resolve the underlying issue(s). The accuracy of our algorithm is similar to that of Assarsson et al., which employs eye-space shadow
geometry. F Frequency content is lost by prefiltering the shadow map. FF Texture mapping can re-introduce aliasing.

6.2 Proxy Scene Geometry

Just as arbitrarily-shaped lights complicate the visibility integral,
finely tessellated scene geometry can be similarly computationally
challenging. An alternative is to compute visibility from simplified
“proxy” geometry rather than the original scene geometry. Doing
so can reduce the number of silhouette edges and reduce the
complexity of the visibility computation per edge. For example,
Ren et al. replace the occluding geometry with a hierarchy of
spheres [Ren et al. 2006]. The size of each sphere approximates the
scale of the local geometry replaced by that sphere. This strategy
simplifies the spherical harmonic rotations and exponentiations
required to compute the degree of occlusion at a point in the scene
visible from the eye. However, finer shadow details are lost in
regions with greater geometric complexity than that expressed by
the proxy geometry.

A more common approach is to represent the scene geometry
(explicitly or implicitly) as thin planar occluders parallel to the
light source. Soler and Sillion explicitly decompose occluding
geometry into planar elements and convolve these elements with
the light to produce soft shadow textures [Soler and Sillion 1998].
Similarly, Eisemann and Décoret create planar proxy geometry by
uniformly subdividing scene geometry by distance from the light,
and projecting the contents of each partition into a plane parallel
to the light [Eisemann and Décoret 2006]. These methods can
achieve relatively high performance, but are susceptible to light
leaks between planar elements.

Alternatively, several methods use a conventional shadow map as a
discrete representation of occluder geometry [Schwarz and Stam-
minger 2007; Guennebaud et al. 2007; Bavoil et al. 2006]. Shadow
map texels are backprojected onto the light, and the projected area is
compared with the area of the light to produce a visibility estimate.
This approach can achieve interactive [Schwarz and Stamminger

2007] and even real-time performance [Guennebaud et al. 2007]
in simple scenes, but high-frequency geometric features (and thus
finer shadow details) are lost due to the discretization. Moreover,
a straightforward implementation of this technique can introduce
holes in occluders resulting in light leaks.

6.3 Shadow Geometry

While proxy geometry is used as a stand-in for scene geometry,
shadow geometry delimits regions of the scene inside the umbra
or penumbra of an occluder. The penumbra cast by a silhouette
edge forms a wedge. The faces of this wedge can be represented
with shadow polygons. Assarsson et al. and Forest et al. compute
penumbral occlusion at each receiver point corresponding to a
pixel covered by these shadow primitives [Assarsson et al. 2003;
Forest et al. 2008]. The result is combined with the occlusion
computed from a second set of shadow primitives which delimit
the bounds of umbrae. Haines utilizes shadow geometry composed
of sheets and cones forming the faces and corners of penumbra
wedges, shaded with a gradient mimicking the transition from
light to shadow [Haines 2001]. This geometry is rendered to
a texture which is then projected back onto the scene. Chan
and Durand generate a set of polygons representing the extents
of penumbrae as seen from the light [Chan and Durand 2003].
This geometry is rasterized into a light-view “smoothie buffer”.
Penumbral occlusion is computed by sampling this buffer, while
umbral occlusion is computed by sampling a classical shadow map.
In all three cases, penumbral regions are defined geometrically
and can be rendered directly, yielding plausible looking shadows
without aliasing or band limiting. However, the shape and structure
of the shadow geometry often derives from assumptions about the
light geometry, resulting in approximations particularly at the joints
between neighboring shadow polygons [Chan and Durand 2003].



6.4 Precomputation and Band-Limiting

Part or all of the visibility computation can be moved offline
and the results stored in a form readily accessible at runtime.
However, precomputing visibility or illumination requires making
assumptions about the spatial relationship between elements of the
scene. These assumptions lead to restrictions on the motion of the
camera or light [Agrawala et al. 2000] and / or on rigid body motion
or deformation of scene geometry [Zhou et al. 2005].

Ren et al. precompute low-frequency visibility information using
spherical harmonic exponentiation [Ren et al. 2006]. As spherical
harmonic coefficients represent illumination in frequency space,
band-limiting bounds the storage requirements of the precomputed
data. This method yields interactive frame rates and handles the
difficult case of self-shadowing in deformable models. It also works
well for large area lights and environment maps, but shadows from
small local light sources are unconvincing.

6.5 Resampling / Filtering Approximate Visibility

Alternatively, the visibility computation can be minimized via
resampling and / or filtering an approximate solution to achieve
often plausible looking (but potentially inaccurate) penumbrae. For
example, the hard shadow silhouettes found via classical shadow
mapping, can be blurred using bilinear filtering. The performance
of these methods benefits from hardware-accelerated filtering and
from the relative inexpense of the approximate visibility function.

Soler and Sillion use an explicit convolution kernel to produce
penumbrae from an image of the occluders as seen from the light.
The resulting soft shadow textures are then re-projected back onto
scene geometry [Soler and Sillion 1998]. The constant-width filter
used is accurate only for planar scene geometry parallel to the
light. Fernando uses a variable-width kernel with percentage closer
filtering to blur hard shadow boundaries in a classical shadow map
on a per-sample basis [Fernando 2005]. The size of the filter is
proportional to the penumbra width and is estimated as the ratio
of the distances from the light to the occluder and the light to
the shadowed geometry. The algorithm is simple to implement
but is bandwidth intensive since the number of shadow map texels
retrieved from memory grows as the square of the kernel width.
Further, the resulting penumbrae can exhibit aliasing artifacts since
the shadow map is a discretized representation of the occluding
geometry. Mipmapping and summed area tables [Lauritzen 2007]
can be used to prefilter shadow maps to avoid this aliasing, but
doing so results in the loss of high frequency shadow information
[Annen et al. 2008; Eisemann and Décoret 2006].

6.6 Closely Related Work

Concurrent with our work, Sintorn et al. have developed a similar
algorithm [Sintorn et al. 2008]. As in our approach, the receiver
points are stored in a light-view spatial acceleration structure. Their
structure is a 2D variation of the 3D perspective-correct grid used
here. Further, the method for determining umbral occlusion, and
the use of shadow geometry to estimate the set of receiver points
affected by a silhouette, are also similar. This similarity is not
surprising. The grid-based data structure and use of light-space
shadow geometry in particular are logical extensions of ideas we
introduced in hard irregular shadow mapping [Johnson et al. 2004].

The two methods differ mainly in the computation of penumbral
occlusion and in the optimizations used. For example, Sintorn et
al. estimate the integral of the visibility function in Equation 2, by
evaluating V at several (i.e. 128 - 1024) points on the light surface.
In our algorithm, we evaluate this integral analytically, avoiding

a potential source of aliasing. Moreover, our algorithm reduces
overdraw associated with the penumbra quads via the optimizations
in Subsection 2.5. These optimizations contribute to consistently
higher performance in scenes of comparable geometric complexity:
15 - 33 fps at image sizes of between 800× 600 and 1600× 1200
(our algorithm) versus 3 - 7 fps at 512× 512 [Sintorn et al. 2008].

7 Conclusion

Though extensively studied, there remains a gap in the solution
space for real-time soft shadow rendering. Specifically, no existing
algorithm has been demonstrated to achieve both high image qual-
ity and good performance in dynamic scenes from modern games.
Existing approaches vary in the visibility function V and in the
method used to estimate the integral of V over the light surface,
but image quality and performance are primarily influenced by the
former. Most soft shadow algorithms determine V from shadow
geometry or a shadow map. Methods which use eye-space shadow
geometry can produce penumbrae comparable to a beam tracer, but
the performance is constrained by overdraw. Alternatively, algo-
rithms based on shadow mapping can achieve high performance,
but are subject to aliasing, incorrect self shadowing, and light leaks.
The incidence of these artifacts can be reduced through prefiltering,
resampling, and oversampling, but such solutions do not address the
root causes: misalignment of the eye and light-view sample patterns
and loss of geometric detail due to the discretization.

Our algorithm is distinct from existing methods in two ways. First,
receiver point coordinates are stored in an explicit light-space
spatial acceleration structure. Second, the occlusion calculation
uses both shadow geometry and a shadow map. These properties
allow umbral and penumbral occlusion to be computed efficiently
and with few if any discernible artifacts. Performance loss from
overdraw is reduced through the use of light-space rather than
eye-space shadow geometry (“penumbra quads”), while artifacts
endemic to classical shadow mapping are avoided by aligning
the eye and light-view sample patterns, and by analytically area-
sampling occluding geometry. Our method incurs overhead from
the per-frame construction of a spatial acceleration structure, and
construction and rasterization of shadow primitives. In spite of
this overhead, soft irregular shadow mapping is comparable in
performance to all but one other recent approach, with substantially
higher image quality than any other known method in the real-
time performance regime. More broadly, the technique provides an
example of using real-time graphics hardware to build (per frame)
and traverse irregular data structures, enabling new kinds of real-
time graphics algorithms based on carefully-directed sampling.

Acknowledgements

The authors would like to thank the following individuals and
organizations who contributed to this work. Jeff Boody developed
an early Larrabee implementation of this algorithm that guided the
work presented here. The image seen in Figure 7c was generously
provided by Thomas Annen. We are grateful to Techland for
granting us permission to use scenes from Call of Juarez in our
analysis. The portion of this work undertaken at the University of
Texas at Austin was funded in part by the Intel Corporation and
NSF CAREER award #CCF-0546236.

References

AGRAWALA, M., RAMAMOORTHI, R., HEIRICH, A., AND
MOLL, L. 2000. Efficient image-based methods for rendering
soft shadows. In SIGGRAPH ’00: Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive



Techniques, ACM Press / Addison-Wesley Publishing Co., New
York, NY, 375–384.

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps.
In Proceedings of the Eurographics Symposium on Rendering
2004, Eurographics, 161–166.

ANNEN, T., DONG, Z., MERTENS, T., BEKAERT, P., SEIDEL,
H.-P., AND KAUTZ, J. 2008. Real-time, all-frequency shadows
in dynamic scenes. In SIGGRAPH ’08: ACM SIGGRAPH 2008
Papers, ACM Press, New York, NY.

ASSARSSON, U., DOUGHERTY, M., MOUNIER, M., AND
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