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Abstract
Significant improvement to visual quality for real-time 3D

graphics requires modeling of complex illumination effects
like soft-shadows, reflections, and diffuse lighting interac-
tions. The conventional Z-buffer algorithm driven GPU model
does not provide sufficient support for this improvement. This
paper targets the entire graphics system stack and demon-
strates algorithms, a software architecture, and a hardware
architecture for real-time rendering with a paradigm shift to
ray-tracing. The three unique features of our system called
Copernicus are support for dynamic scenes, high image
quality, and execution on programmable multicore architec-
tures. The focus of this paper is the synergy and interaction
between applications, architecture, and evaluation. First, we
describe the ray-tracing algorithms which are designed to use
redundancy and partitioning to achieve locality. Second, we
describe the architecture which uses ISA specialization, multi-
threading to hide memory delays and supports only local
coherence. Finally, we develop an analytical performance
model for our 128-core system, using measurements from sim-
ulation and a scaled-down prototype system. More generally,
this paper addresses an important issue of mechanisms and
evaluation for challenging workloads for future processors.
Our results show that a single 8-core tile (each core 4-way
multithreaded) can be almost 100% utilized and sustain 10
million rays/second. Sixteen such tiles, which can fit on a
240mm2 chip in 22nm technology, make up the system and
with our anticipated improvements in algorithms, can sustain
real-time rendering. The mechanisms and the architecture
can potentially support other domains like irregular scientific
computations and physics computations.

1. Introduction

Providing significant improvement to visual quality for
real-time 3D graphics requires a system-level rethink from
algorithms down to the architecture. Conventional real-time
3D graphics is specialized to support a single graphics
rendering algorithm: the Z-buffer. This model is implemented
with a fixed pipeline and some programmable components.

The programs are restricted in how they communicate with
each other and, if at all, with global memory. This Ptolemic
universe of algorithms, software, and architecture, revolves
around the Z-buffer, and has provided great success thus far.

Future visual quality improvements in real-time 3D graph-
ics require more realistic modeling of lighting and complex
illumination effects, which cannot be supported by the Z-
buffer algorithm. Among other things, these effects require
visibility computations (light-ray and surface intersection)
involving rays with variety of origins and directions, while the
Z-buffer is optimized for regularly spaced rays originating
from a single point.

Modern rendering systems live in the Ptolemic Z-buffer
universe and provide some support for these effects by over-
extending the use of the Z-buffer algorithm. This results
in several problems, namely, lack of algorithmic robustness,
poor artist and programmer productivity, system complexity
for programmers and severe constraints on the artist and
types of scenes. The recently announced Larrabee architecture
takes a step outside this Ptolemic universe by implementing
the special-purpose Z-buffer hardware using customizable
high-performance software running on a flexible parallel
architecture [30]. Product reality, backward compatibility and
industry’s apprehension to disruptive change force these steps
to be gradual.

Graphics algorithms and VLSI technology have reached
a point where a paradigm shift to a Copernican universe
centered around applications and sophisticated visibility al-
gorithms with ray-tracing is possible. Ray-tracing naturally
supports realistic lighting and complex illumination and can
thus provide the next generation of visual quality. The ar-
chitectural challenge in a ray-tracing system is providing
a highly parallel and scalable architecture that can effi-
ciently support data-parallel computation and irregular read-
modify-write memory accesses. The software and algorithm
challenge is to develop a ray-tracing system that is highly
parallel, exploits locality, and reduces synchronization. The
evaluation challenge is to accurately project performance
with design trade-offs for a complex new application on a
new architecture.

This paper starts this paradigm shift by presenting our full



Figure 1. Copernicus system overview and comparison to Z-buffer

system design called Copernicus, outlined in Figure 1. Coper-
nicus includes several co-designed hardware and software
innovations. Razor, the software component of Copernicus, is
a highly parallel, multigranular (at the coarse grain it performs
domain decomposition and in the fine grain it traces multiple
rays), locality-aware ray tracer. The hardware architecture
is a large-scale tiled multicore processor with private L2
caches only, fine-grained ISA specialization tuned to the
workload, multi-threaded for hiding memory access latency
and local cache coherence. In addition to providing a new
level of image quality, the application-driven approach and
programmability in Copernicus allows multi-way tradeoffs
between performance, image quality, image size, and frames-
per-second. In a game-specific environment, collision detec-
tion, approximate physics simulations and scene management
can also be performed by the rendering system.

To evaluate Copernicus, we developed a customized an-
alytic model seeded with inputs and validated by a scaled
prototype and a full system simulator. This model captures
the impact of multi-threaded execution and memory access
conflicts. We estimate a 16-tile chip, with 8 cores in a tile,
can fit on 240mm2 chip at 22nm technology. When running
at 4GHz, this system can sustain real-time frame-rates for
realistic benchmarks, rendering up to 74 million rays per
second over all, and 10 million rays per second in a tile.

The four main contributions of this paper are: 1) the
first complete full system single-chip design for high qual-
ity real-time rendering of dynamic scenes using ray-tracing
with effects like soft shadows; 2) an architecture that is
a realistic transformation path for graphics hardware from
“specialized” embarrassingly-parallel architectures to flexible
high-throughput parallel architectures; 3) a detailed charac-
terization and analysis framework for a future computation
workload; 4) and a customized analytic model that captures
the impact of multi-threading and memory access conflicts.

The rest of this paper is organized as follows. Section 2
describes our algorithms and software architecture. Section 3
presents a detailed characterization of this workload and
Section 4 describes our architecture design. Section 5 presents
our performance results and Section 6 discusses related work.
Section 7 discusses synergy between application, architecture,
and evaluation, and extensions beyond graphics, and Section 8
concludes.

2. Graphics algorithms and Razor
One of the big challenges for future architectures is the ar-

chitecture/applications “chicken and egg” problem. To study
architectural tradeoffs, we need an application optimized for
that architecture. For many consumer applications, future
workloads may not exist yet for any architecture, because
additional performance is used to increase quality, rather
than reduce time to solution. To overcome this “chicken and
egg” problem for our ray-tracing based system, we explicitly
designed to explore future graphics capabilities on future
multicore architectures. For a full discussion of the graphics
algorithms refer to [5]. Below, we provide an overview
emphasizing the workload and architecture interaction.
Basics: Ray-tracing is a technique for generating images by
simulating the behavior of light within a 3D scene by typically
tracing light rays from the camera into the scene [25]. In
general two types of rays are used. Primary rays are traced
from a particular point on the camera image plane (a pixel)
into the scene, until they hit a surface, at a so-called hit point.
Secondary rays are traced from a hit point to determine how
it is lit. Finally, to determine how the surface material appears
texture lookups and shading computations are performed at
or near the hit point.
Razor description: Our ray-tracing system, called Razor
supports dynamic scenes (i.e. scenes that change geometry
with user interaction like breaking a wall in a game) with high
quality effects like soft shadows and defocus blurring using a
general visibility model. As shown in Figure 1, it implements
visibility using a spatial data structure (specifically a kd-
tree) built for every frame, unlike a traditional ray-tracer
which does this once as part of pre-processing. Razor uses
coarse-grain concurrency by domain decomposition of frames
into “chunks”, and fine-grained concurrency by packet-tracing
many rays simultaneously as shown in Figure 1. Material
shading computations are decoupled from intersection com-
putations since they differ significantly.
Razor analysis: The spatial data structure (kd-tree) and per-
frame rebuild allows objects to move in the scene. However,
this requires fine granularity read-modify-write support in
the memory. The explicit chunk-based concurrency in Razor
allows each processor to build its own copy of the spatial
data structure, avoiding global synchronization. The storage
overhead of “replication” is relatively small because the
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primary rays assigned to different chunks access mostly
non-overlapping parts of the data structure. Secondary rays
could disrupt this behavior, but empirically we found their
impact to be small. Decoupling material shading from in-
tersection and fine-grained packet-tracing provides fine-grain
data-parallelism.

From analysis of the algorithm, we derive the hardware
challenges for our Copernicus system: (a) Large computation
demand requiring a highly parallel architecture, (b) Key data
structures are modified or rebuilt every frame, with this work
done on-demand rather than in a temporally separate phase,
(c) These data structures are irregular, and thus difficult to
support with software managed caches, (d) The size of the
key data structures is large (on the order of a few gigabytes),
so the architecture must exploit locality.
Sofware implementation: To drive the algorithms and ar-
chitectural exploration we developed a fully functional im-
plementation of Razor. Razor is parallelized using multi-
threading, with one main thread and worker threads for each
processor core. Primary rays are organized into 2D screen-
space “chunks” which are placed onto a work queue and
mapped to worker threads as shown in Figure 1. Chunks are
sized to capture significant memory-access locality without
disrupting load-balance. We optimized Razor using SSE
intrinsics with the Intel Compiler running on Windows, to
drive the algorithm development. For architecture studies,
we implemented a flexible version of Razor that compiles
on Gcc/Unix which we have tested on x86/Linux and
Sparc/Solaris. It uses our cross-platform SSE library that
implements the intrinsics using C with the native compiler
generating instructions available in the machine. While Razor
is designed for future hardware, it runs on today’s hardware
at 0.2 to 1.1 frames/sec on a commodity 8-core (2 socket
x quad-core) system and is robust enough to support scenes
extracted from commercial games.
Related work: Ray-tracing has been studied for a long
time [31], [39]. Only recently researchers have begun to
examine its potential for interactive rendering with systems
targeted at today’s hardware [23], [1], [9], ASICs [33],
[35], [40], FPGAs [36], or distributed clusters [28], [38].
In general, these systems are not representative of future
systems in one or more of the following ways: They do
not address the parallel scalability of single-chip manycore
hardware; they compromise image quality and functionality
so that the workload is simpler than that of future real-time
ray-tracing workloads; or the workload is restricted to the
easier case of static or rigid-body scenes. The Manta system
[2] is a notable partial exception – its scalability on large
multi-chip SGI shared memory machines has been studied.

3. Workload characterization
This section presents a detailed characterization of our ren-

dering system, focusing on the parallelism, memory behavior,

computation, and sensitivity to input. We analyze both the
unoptimized and x86-optimized implementations to drive our
architecture design. Unlike simulation-only characterization
or back-of-envelope estimates, we use performance counter
measurements on existing systems to motivate newer systems.
Such a methodology is essential to break out of the “chicken
and egg” application/architecture problem.
Infrastructure: For performance tuning and application de-
velopment we used two scaled-prototype systems: namely
a dual-socket quad-core Intel processor (Clovertown - Intel
Xeon E5345 2.33GHz) that allows us to examine 8-way
scalability and a Niagara system (Sun-Fire-T200) that allows
us to examine 32-way scalability. In addition, these two sys-
tems allow us to compare out-of-order processing to in-order
processing, and the benefits of simultaneous multi-threading.
We used PAPI-based performance counter measurement [20],
gprof [7], Valgrind [21], and Pin [26] to characterize Razor. In
addition, we used the Multifacet GEMS simulation [18] envi-
ronment for sensitivity studies. Table 1 briefly characterizes
our benchmark scenes which are from game and game-like
scenes and representative of real workloads.

3.1. Parallelism
Figure 2 characterizes Razor’s parallelism behavior using

our prototype systems and shows it has abundant parallelism.
Figure 2a shows performance on a single core (in-order
Niagara) as more threads are provided. We can see near-
linear speedup going from 1 to 4 threads. Our analytical
model of processor utilization (details in section 5.2) and
simulation results show that at 1-thread the processor is
only 20% utilized and hence executing 4 threads provides
speedup. This parallel speedup shows that the working set
size of each thread is small enough to fit in the L2 cache and
multithreading hides the latency of the L1 misses.

Figure 2b and 2c show parallel scalability as the amount
of resources (# cores) is increased from 1 core to 8 cores:
speedups are relative to the baseline 1-core. Niagara running
in this configuration under-utilizes the cores because only one
thread is assigned to each core. Razor exhibits near-linear
speedups, and a 16-thread configuration with two threads per
core shows similar behavior. The Clovertown system shows
linear speedup up to 4 cores and beyond that its front-side
bus based communication hinders parallel speedups. Niagara
speedups for this application require some explanation, since
it has one FPU per chip. Our SSE library when executed
natively on a SPARC machine like Niagara does not have
access to real SIMD registers. Due to gcc’s aliasing analysis,
these variables are not register-allocated and instead are in
memory. Hence, every intrinsic call, even though inlined
results in 8 memory instructions at least, thus making the
FPU under-utilized. On our simulator, we effectively emulate
SIMD registers and operations which are incorporated into
our instruction mix analysis and performance estimation.
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1) Benchmark Courtyard Fairyforest Forest Juarez Saloon
2) Complexity (# triangles) 31,393 174,117 54,650 154,789 172,249
3) Memory reserved (MB) 2900 400 2600 1400 1100
4) Memory used dynamically (MB) 559 122 515 501 236
5) Estimate of maximum bandwidth

required for real-time (GB/s)
13.7 2.9 12.7 12.2 5.7

6) Unique memory references per
100 million instructions

20482 15976 22312 83264 73650

7) Rendering time (s) 6.3 9.2 12.9 17.5 10.5
8) Rendering time - Fast setting (s) 1.1 0.8 0.3 0.2 0.4
9) Description Skinned and ani-

mated characters
Benchmark
scene

Catmull-Clark con-
trol mesh, skinned
and animated

Call of Juarez
outdoors

Call of Juarez
indoors

Application profiling results from gprof. Percentage contribution of different functions
10) Functions
11) UnifiedKDTreeIntersectAscending 34.9% 32.6% 35.5% 28.7% 26.7%
12) rzRayBoxIsectOne 17.4% 10.9% 19.3% 29.0% 25.0%
13) segmentOneFootprintIncrQ 18.6% 12.1% 9.4% 7.7% 9.0%
14) IntersectRayKDLeafP 7.9% 6.5% 9.8% 12.5% 10.5%
15) rzComputeIsectTriPair 3.8% 7.6% 1.8% 6.5% 6.3%
16) ProjectAndLerpOneVertex 3.9% 4.8% 3.3% 5.6% 6.1%
17) QuadSample 7.7% 8.4% 3.7% 2.9% 4.6%
18) Other 5.9% 17.1% 17.3% 7.1% 11.9%

Table 1. Benchmark scenes. All scenes (except “fast settings”) rendered at 1024x1024 image size, and contain 2 lights, 8 primary
rays/pixel, 4 secondary rays per primary-ray (40 rays/pixel total). Rendering times are measured on Clovertown system with eight

threads. Rendering times on Niagara are about 12X worse - due to in-order processing, no SSE, and lower frequency

In these experiments only computation resources are scaled
while memory bandwidth, capacity, and caches remain fixed1.
These results show that Razor is clearly well balanced and
highly parallel.
Observation 1: Razor’s physically based optimizations that
use redundancy to obtain parallelism work well.
Observation 2: There is abundant parallelism in Razor.

3.2. Memory

One of the key insights in the structuring of Razor is to
exploit coherence in primary rays (i.e. rays with physical
proximity touch physically close-by objects, and thus exhibit
locality in the spatial data structure) and secondary rays,
which although somewhat less coherent still have reasonable
locality in the data structures they need to access. As a
result, redundantly building the kd-tree for every thread is
not expected to result in linear memory growth. To study this
behavior, we track memory usage within the application and
vary the number of threads from 1 to 32. Figure 3a shows
this memory footprint growth which is quite slow and quickly
tapers off. Except for one scene, going from 1 to 32 threads
increases memory by less than 2X. For fairyforest, the
memory consumption grows by 5X because this scene has an

1. On the Clovertown prototype, cache doubles when going from 4 to
8 cores, and memory bandwidth by a smaller amount, as the two chips
communicate through the front-side bus.

extremely finely tessellated surface which is represented with
a very flat hierarchy, resulting in high duplication overhead.
The scene graph can be reconstructed to avoid such duplica-
tion. Overall, this shows that the common case assumptions
that Razor is based on are valid and work. Table 1 (row 3)
shows the actual memory consumed for the baseline 1-thread
configuration.
Observation 3: Per-thread duplication of the spatial data
structures results in little memory overhead.

We examine detailed memory behavior in several ways.
First, to determine working set size, we simulated Razor in a
machine configuration with a single level of a fully associative
cache and vary the cache size from 4KB to 256MB as shown
in Figure 3b. The miss rate rapidly tapers off at 64KB which
shows the working set is quite small even though the total
memory usage is of order of GB ( Table 1 row three and four).
In these experiments we render only one frame of the scene.
If we rendered multiple frames and set the cache to match
the memory footprint, these “compulsory” misses will also
go away. However, Razor rebuilds its spatial data structures
for every frame to account for dynamic effects, and since the
amount of computation is quite large for a full frame, cache
reuse across frames is immaterial.

To quantify locality and measure the instantaneous working
set, we sampled the application every 100 million instruc-
tions and measured the total number of memory references

4



 1

 1.5

 2

 2.5

 3

 3.5

 4

 2  4

Courtyard
Fairyforest

Forest
Juarez
Saloon

 1

 2

 3

 4

 5

 6

 7

 8

 2  4  6  8

Courtyard
Fairyforest

Forest
Juarez
Saloon

 1

 2

 3

 4

 5

 6

 2  4  6  8

Courtyard
Fairyforest

Forest
Juarez
Saloon

(a) Niagara 1-core with multiple threads per core (b) Niagara multiple cores (1 thread per core) (c) Clovertown multiple cores
(1 thread per core)

Figure 2. Razor parallelism. For all graphs X-axis is number of threads and Y-axis is speedup.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 4  8  12  16  20  24  28  32

M
e
m

o
ry

 f
o
o
tp

ri
n
t

# Threads

Courtyard
Fairyforest

Forest
Juarez
Saloon

 0

 1

 2

 3

 4

 5

 6

4K 32K 128K 1M 8M 64M 256M

M
is

s
 r

a
te

 (
%

)

Cache size

Courtyard
Fairyforest

Forest
Juarez
Saloon

Benchmark L1 miss L2 miss
rate % rate %

Courtyard 1.4 2.2
Fairyforest 1.5 4.4

Forest 1.9 5.7
Juarez 1.5 26.1
Saloon 1.5 5.8

(a) Memory growth with threads measured
on Clovertown. (Same trend on Niagara)

(b) Working set size - measured through
simulation

(c) Locality measured from simulating
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Figure 3. Razor memory behavior.

and unique memory references using Pin. The sixth row
in Table 1 shows the average unique memory references
per sample. Across all the scenes, the number of unique
addresses (measured at cache line size granularity) is between
15000 and 80000 for 100 million instructions, while the total
references is between 45 million and 50 million. This shows
high spatial locality in the kd-tree is indeed achieved by the
coherence between primary rays and the localized nature of
secondary rays. Figure 3c shows our measured L1 and L2
data cache miss rates derived from simulating a Niagara-like
configuration. Since the working set is quite small, we can
see that the miss rates are quite low.
Observation 4: The instantaneous working set of the appli-
cation is quite small.
Observation 5: The data traversed is scene dependent and
is fundamentally recursive and hence static streaming tech-
niques cannot capture the working set.

3.3. Computation

Table 2 describes the basic computation characteristics.
Columns 2 through 6 show the breakdown of computation
in terms of different functional units used. The code is very
memory intensive with only a small fraction of branches.

However, most of these branches are data-dependent and
hence cannot be supported efficiently with just predication.
We measured branch prediction accuracy in our Clovertown
prototype and found it to be greater than 97% which shows
a 2-level predictor learns the correlations well (Niagara has
no branch prediction). Columns 7 and 8 show IPC which
averages close to 1 on the 3-issue out-of-order Clovertown,
and about 0.4 on the in-order Niagara, showing limited ILP.

Table 1 shows our coarse-grained analysis of computation.
Six functions (lines 11 through 16 in Table 1) contribute
more than 80% of the total computation time. Most of
the computation time is spent in the top three functions
which take a packet of rays and traverse the kd-tree data
structure. As needed, they call other functions to lazily
build the tree during traversal. When rays do intersect a
leaf node, IntersectRayKDLeaf is called to traverse a
smaller spatial data structure for a tessellated surface patch.
As needed, it, in turn, calls another function to lazily create
the geometry. Actual ray/triangle intersection is performed by
the fifth and sixth most common functions which prepare the
pair of triangles to interpolate from discrete levels of detail
and perform the actual intersection test on the interpolated
triangle.
Observation 6: There is limited fine-grained instruction-
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Scene Instruction Mix(%) IPC Speedup
ALU FP LD ST BR N C OOO SSE

courtyard 42 32 14 8 2 0.4 1.01 3.4 3.5
fairyforest 46 26 13 8 4 0.3 1.03 3.4 3.1
forest 53 18 15 5 7 0.4 1.00 2.6 4.2
juarez 49 18 12 12 6 0.4 1.05 3.3 3.7
saloon 48 22 13 9 6 0.3 1.04 3.7 3.4

Table 2. Razor computation characteristics. Instruction mix
data shown is for Niagara SPARC code with SIMD emulation.

Pin-based x86 instruction mix is similar.
Core
type

# Cores Rendering
time(sec)

# Cores Rendering
time(sec)

256KB cache per core Fixed 2MB cache total
OOO∗ 13 3.7 - 1.5 44 7 - 0.5
Inorder+ 109 33 - 2.7 167 22 - 1.8

Table 3. Simple optimistic scaling of existing designs.
Performance range across the different scenes. ∗ Core2-like

core. + Niagara-like core.

level parallelism and significant amount of irregular graph
traversal.
Machine-specific optimizations: The last two columns in
Table 2 compare performance across our two prototype
systems, which shows Razor’s sensitivity to out-of-order pro-
cessing and ISA specialization. To normalize for technology,
Clovertown system performance was linearly scaled down
by the frequency difference to Niagara. Speedup in this
scaled rendering time is compared to Niagara. Adding out-
of-order processing and increased issue width alone provides
an approximate 3X performance improvement, shown by
the OOO column. Adding SIMD specialization with SSE3
instructions and machine specific optimizations (compilation
with gcc -O4 -msse3) provides an additional 3X to 4.2X
improvement, shown in the last column.
Observation 7: Application specific tuning can provide sig-
nificant performance improvements for Razor.

This workload characterization of Razor shows that it is
highly parallel and is thus suited for a multicore parallel
architecture. But it is not trivially data parallel, and while its
memory accesses are quite irregular, they have good locality.

4. Architecture
Our goal is to build a future system targeted at high quality

scenes at 1024x1024 resolution at real time rates implying
rendering times of 0.04 seconds per frame. On average,
performance on our 8-core system ranges between 17.5 to
4 seconds per frame for high quality scenes and between 1.1
to 0.5 seconds for lower quality scenes. Compared to this
system, we need another 100-fold to 500-fold increase in
performance. While Razor is heavily optimized, we believe
further algorithmic tuning is possible and expect a 10-fold
increase in its performance and thus our target is 0.4 seconds
per frame using the current software. Thus the architecture

Figure 4. Copernicus hardware organization.

must provide 10- to 50-fold better performance than our 8-
core prototype system. We pick a design point fives years in
the future and target 22nm technology, a frequency of 4GHz
which should be feasible with relatively modest timing and
pipelining optimizations, and die area of 240mm2.

Simply scaling existing systems has three main problems:
a) area constraints limit the performance that can be achieved,
b) the on-chip memory system and interconnect design
becomes overly complex, and c) general-purpose solutions
do not exploit several opportunities for application-specific
tuning. Table 3 summarizes the area and performance that
can be sustained by simply scaling and integrating more
cores on chip. The first method assumes the cache capacity
is scaled such that there is always 256KB of L2 cache per
core and the second method provides a total of 2MB for
all the cores. Examining the OOO (out-of-order) cores, they
are simply too large to provide the kind of parallel speedup
required. The in-order Niagara-like cores, while area efficient,
do not have support for fine-grained data-level parallelism
and their baseline performance is too low. Thus neither
technique provides the performance required. What is ideally
required is Core2-like performance with the area of an in-
order processor. Second, existing multicore designs of shared
L2 caches with global coherence don’t scale to hundreds of
cores. Finally, the cumulative L2 miss-rates of all the cores
places a large burden on the memory system, and the fixed
2MB L2 cache will face severe congestion and require several
ports. In this section, we describe the hardware architecture
of our Copernicus system which exploits application behavior
and fuses existing technologies and develops new techniques.

4.1. High-level organization
We propose a 2-level multicore organization with a set

of cores and a shared L2 cache forming a tile. The full
chip consists of multiple tiles (caches private to tile) and
I/O controllers. Figure 4 shows this organization and we
specifically investigate a 16-tile, 8 cores per tile configuration.

Figure 1 shows the software mapping to the architecture.
The 2D screen-space is partitioned and into at least as many
“blocks” as there are tiles, and coarse grained parallelism is
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achieved by providing a “block” to each tile. These “blocks”
are further broken into “chunks”, the granularity at which
Razor operates via its chunk work queue. Chunks are sized
to capture significant memory-access locality, made large
enough to amortize the cost of communication with the work
queue, and small enough to not cause load-imbalance. Within
a “chunk”, each core ray-traces packets of up to 16 light rays
together exploiting fine-grained parallelism.

4.2. Core organization
Each core in a tile resembles a conventional programmable

core but with specializations for processing-intensive work-
loads such as graphics rendering, by matching the memory in-
tensity and computation requirements. Since it is not possible
to keep the entire working set in the L1 cache, techniques to
hide this latency are required. For this workload, out-of-order
processing is not area or power efficient, and since there is
abundant parallelism, we use simultaneous multi-threading to
hide memory latency. Unlike GPUs, which require hundreds
of threads per core to hide main memory latency, we expect
good L2 cache behavior and thus require only modest amount
of SMT - between 2 and 8 threads per core. Razor is a
packet ray-tracer and exhibits fine-grained parallelism in ray
processing. In fact this is fine-grained data-level parallelism
because the same graph traversal and surface-ray intersection
operations are computed for every ray in a packet. To support
this efficiently, each core also includes a 4-wide SIMD unit.
Our initial design explored in this paper uses the Intel SSE
intrinsics for our SIMD unit as the software was already tuned
for it.

In addition, each tile includes an “accelerator” that is inte-
grated into the execution pipeline, although this accelerator is
not currently used by our software. Long latency and highly
specialized tasks could be routed to this unit by all the cores
in a tile. We expect moderately frequent computation like
square root, trigonometric equations, and light attenuation
to be implemented in the accelerator. Having such a shared
per-tile accelerator can provide significant area and power
efficiency, to be explored in future work. In this study, we
only assume an SSE-like unit in every core.

4.3. On-chip memory and Memory system
Each tile includes a shared L2 cache that is connected

through a cross-bar to the different cores. The different
tiles are connected through a mesh-network that eventually
routes requests to the integrated memory controllers. Our
characterization work suggests that in the worst case, a single
frame touches a total of 122MB to approximately 600MB
worth of cache lines (Table 1, row 4). Since our system
rebuilds its spatial data structures every frame, we anticipate a
worst case memory bandwidth of 600MB * 25 frames/second
= 15GB/second. Detailed memory system tuning is beyond

the scope of this work and in this study we use a conservative
analytical model to estimate memory system contention.

Our L1-L2 cache is designed for simplicity and follows
a simple cache coherence protocol. The L1 caches are write
through and the L2 caches maintain a copy of the L1 tags
and keep track of which core in a tile has a copy of any
given L1 line. A significant simplification in our design
which allows us to scale to the order of 128 cores is that
the hardware provides no coherence guarantees across tiles.
This abstraction works for this application but how well this
extends to other applications is an open question. Given
technology trends of wire-delays and storage, this tradeoff
of redundancy over synchronization is a unique design point
that has not been explored in the past.

5. Results
This section evaluates the Copernicus system. We use the

five benchmark scenes described in Table 1 and a full system
simulator and analytical models for performance estimates.
We first present baseline performance that is achievable on
a single-core, and then study performance improvements
through multi-threading and parallelism from multiple cores
on a tile. Finally, we present full chip results using the
analytical model.

5.1. Methodology
Simulator: We customized Multifacet GEMS to model a
single tile with in-order issue and varying level of multi-
threading support. The simulator is configured with a 32KB,
2-way set associative L1 data and instruction cache. The
shared L2 cache is set to be 2MB, and 4-way set associative.
We use the default GEMS functional unit latencies and a 2-
level branch prediction scheme with a total of 100Kbits of tar-
get and history. Thread-scheduling logic is strict round-robin
between the threads that are not waiting on a L1 cache miss.
Razor is compiled for a sparc-sun-solaris2.10 target with our
C-only SSE intrinsics library. The implementation triggers a
trap in GEMS, and we simulate 4-wide SIMD execution of
these instructions, ignoring the functional instruction stream.
Datasets: Rendering a full frame of a complete scene (or
multiple scenes) is truly representative of performance but the
simulation overhead for this is too high - a single frame is
about 50 billion instructions. Thus it is necessary to simulate
a subset of a frame, but taking care to account for the
significant amount of intra-scene heterogeneity. For exam-
ple, background regions require little computation, whereas
regions along a shadow boundary require lots of computation.
To account for this heterogeneity, we simulate four randomly
selected regions for all the benchmarks, and for every region
we simulated the smaller of 200 million instructions or 128
primary rays (and all of their accompanying secondary rays)
per thread. The performance we report is the average across
these regions.
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Metrics: It is easier to compare rendering systems and
understand tradeoffs by measuring total rays rendered per
second rather than frames/second. In the remainder of this
paper we use total rays/sec to report performance and IPC
to report processor utilization. Razor automatically generates
secondary rays as the primary rays traverse the scene and all
the scenes used in this study require 40 million total rays to
render the full scene (1024x1024 resolution, with 8 primary
rays per pixel and 4 secondary rays per primary ray for our
scenes). A real-time rate of 25 frames-per-second translates
to 1,000 million total rays/sec. Other contemporary systems
like Cell’s iRT sustain roughly 46 million total rays/second on
static game-like scenes with shading [1]. Note that we target
significantly higher image quality. We assume a ten-fold
improvement in Razor’s algorithms is possible, and hence
our goal with this architecture is to sustain 100 million total
rays/sec on the current Razor software.
Limitations: In this work, we abstract away the details of
the operating system and thread scheduling. Our system sim-
ulation relies on the operating system’s scheduling heuristics.
We did not observe large load imbalances. The number of
threads created is under application control and we set it to
match number of threads the hardware supports.

5.2. Analytical model
Microarchitecture simulation of the full architecture is in-

feasible. So, we developed a new customized analytical model
that takes fundamental input parameters which characterize
the system and workload, and projects performance - at scale
- for a variety of system design alternatives.

The model accounts for all non-ideal parallel scaling of
the workload on the hardware. More specifically, the model
captures the longer communication latencies to main memory
and three types of contention: (1) the intra-core contention
among threads for the processor core, (2) the intra-tile
contention for the shared L2 caches, and (3) the intra-chip
contention for main memory. Since each tile has its own k-d
tree, synchronization delays for nodes in the tree, which are
negligible in the single-tile case, do not increase with more
tile.

The model provides insights into the impact of pipeline
stalls within a thread, processor stalls in the context of mul-
tiple threads, and contention for memory resources. Accurate
modeling of the thread contention for core processor cycles
requires modeling the impacts of instruction dependences
as well as multi-issue within the core pipeline. This, in
turn, required new fundamental model input parameters and
new model equations. These new model customizations are
applicable to evaluating other applications on other future
multi-threaded multicore architectures, and to our knowledge
have not previously been developed.

Since our processors are in-order, the main parameters that
dictate the processor’s execution are the L1 and L2 cache

misses and the register dependences between instructions.
The dependences are measured in terms of the distribution
of the distance from each instruction to its first dependent
instruction. We outline the details of the model in three stages.
Pipeline stalls: In the first stage, the fundamental workload
instruction mix parameters given in Table 2 are used together
with the functional unit latencies to estimate, for each in-
struction type i, the average time that the next instruction
will stall due to either a dependence or a shorter latency. We
let fi denote the fraction of instructions that are of type i,
Li denote the instruction pipeline length for instruction type
i, and d1 denote the fraction of instructions with distance to
first dependent instruction that are equal to one. Letting ti
denote one (for the cycle that type i begins execution) plus
the average stall time for the next instruction, we capture the
first-order pipeline stall effects for this workload as follows:

ti = 1 +
∑

j:Lj<Li,j!=branch

fj(Li − Lj)

+(
∑

Lj>=Li

fj + fbranch)× d1 × (Li − 1)

Multi-threading: In the second stage, we use the above
equation to first compute t, the sum of ti weighted by fi, and
then to compute the distribution of the number of instructions
that begin executing in each cycle. This latter quantity is a
function of the number of threads that are being interleaved
(k), and the instruction issue width. For k threads on a single
issue core, the fraction of cycles that an instruction is issued
can be modeled by, 1−

(
1− 1

t

)k
. In this case, r(k), the ray

tracing rate with k threads as compared with one thread is the
ratio of this quantity to 1/t, since 1/t is the fraction of cycles
that an instruction is issued when a single thread executes on
a single-issue core. It is similarly straightforward to develop
the execution rates for a 2-issue core.
Memory system: In the final stage of model development, we
incorporate the impact of contention for L2 and main mem-
ory banks. Here we use well-established queuing network
approximate mean value analysis (AMVA) techniques [15].
Each cache and main memory bank is represented by simple
single-server queues with deterministic service times, routing
of cache misses is represented by visit counts to the applicable
L2 cache and main memory banks, interconnection network
latencies are represented by delay centers, and each core is
represented by a variable-rate queue to capture the execution
rate as a function of the number of threads that are executing
(and not waiting on a cache miss). Equations for such queuing
systems are available for example in [15]. Such equations
have proven to be accurate in other parallel system architec-
tures with a single-thread per core [32]. A key contribution
of this paper is the validation of the extensions to estimate
pipeline stalls and multi-threading.

Using this fairly simple system of equations, we explore the
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Scene 1-Thread 2-Threads 4-Threads
IPC Perf. IPC Perf. IPC Perf.

S M S M S M
Single core, 1-issue processor

courtyard 0.45 0.46 280 0.82 0.71 515 0.97 0.92 605
fairyforest 0.39 0.43 480 0.73 0.69 900 0.97 0.91 1200
forest 0.43 0.52 125 0.86 0.78 255 0.97 0.95 285
juarez 0.34 0.38 200 0.69 0.70 400 0.97 0.93 565
saloon 0.38 0.43 360 0.73 0.70 590 0.97 0.92 915

Single core, 2-issue processor
courtyard 0.7 440 1.1 0.84 690 1.7 1.5 1065
fairyforest 0.59 730 0.94 0.72 1160 1.7 1.2 2100
forest 0.64 190 1.2 1.03 355 1.9 1.6 560
juarez 0.48 280 0.9 0.80 525 1.7 1.4 990
saloon 0.56 530 0.98 0.80 925 1.7 1.4 1605

One Tile - 8 cores per tile, 1-issue processors
courtyard 3.7 3.7 2280 7.0 5.7 4375 7.8 7.4 4875
fairyforest 3.6 3.4 4445 7.2 5.5 8890 7.8 7.3 9630
forest 3.8 4.1 1120 7.2 6.3 2125 7.9 7.6 2330
juarez 3.7 3.5 2150 7.4 5.6 4300 7.8 7.4 4535
saloon 3.6 3.6 3395 7.1 5.6 6700 7.8 7.3 7370

One Tile - 8 cores per tile, 2-issue processors
courtyard 5.0 3125 8.8 6.7 5500 14.8 11.8 9250
fairyforest 4.9 6050 8.8 6.1 10865 14.6 10.8 18025
forest 5.3 1565 8.9 8.3 2625 14.6 13.3 4305
juarez 4.8 2790 9.0 6.7 5235 14.6 14.8 8490
saloon 5.0 4715 8.2 6.4 7745 14.3 11.5 13510

Table 4. Single tile model validation. Column S: simulator
results. Column M: analytical model results. Performance

measured in 1000s of rays/sec from simulator.

design space of numer of tiles, cores, threads-per-core, issue-
width, and scene-specific cache miss rates, and provisioning
of how many memory banks. Other model-derived insights
include:
Model Insight 1: Stalls due to dependences have small impact
on performance.
Model Insight 2: Stalls due to L1 cache misses have a large
impact on performance.
Model Insight 3: Significant speedup is possible with multi-
threading and two-issue cores, but these speedups come at
the cost of significant demands for memory bandwidth.

5.3. Performance results
We first examine single-tile performance from simulation

and the model to validate our model. We then examine the
full system performance and total chip area.
Single-tile and model validation: Table 4 shows the perfor-
mance across the different processor configurations we study,
which all assume a 4GHz clock frequency. We specifically
examine the sensitivity to multi-threading and issue width.
For each SMT configuration, there are three columns: IPC
from the simulator, IPC from the model, and performance
(total rays per second in 1000s). Considering the single core,
1-thread configuration, we can see that a single thread is able
to utilize less than 50% of the processor for almost all the
scenes, and with 2 threads close to 80% is utilized (IPC is
0.69 to 0.83), and reaches almost 100% at 4 threads (IPC is
0.97). Our analytical model predicts performance accurately

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2  4  6  8  10  12  14  16

R
a
y
s
/s

e
c
 (

m
ill

io
n
s
)

# Tiles

16 banks
24 banks
32 banks
48 banks
64 banks

Ideal

Figure 5. Performance sensitivity to memory bandwidth. 1-
issue, 4-way SMT core. [Courtyard scene].

(IPCs in the M column) and is off by less than 2%. The
second set of rows, show performance for a 2-issue processor.
The 1-thread and 2-thread configurations perform moderately,
and we see large benefits when executing 4 threads with IPCs
ranging for 1.7 to 1.9. The model errors are slightly higher.

The last two sets of results are for a full tile consisting of 8
cores and we show aggregated IPC from all cores. The single
issue cores are more efficient and come close to executing at
100% utilization with 4 threads with IPCs reaching 8. The de-
viation of the analytical model from simulation is now higher.
Overall though, it is consistently more conservative than the
simulator because of how it models L2-bank contention.

The IPC by itself is a meaningless number when deter-
mining performance for the scenes, as each scene requires
different instructions and amount of work. Instead, total rays
per second is a better measure. Our target for real-time rates
is 100 million total rays/second using all the tiles. Table 4
shows that a single tile with single-issue and four threads per
core can sustain between 2.3 million and 9.6 million rays per
second.
Full system design exploration: To obtain full-chip per-
formance, we used our full system analytical model, which
models memory and on-chip network contention. To complete
the chip design, we need to determine memory system
configuration and interconnection network.
Memory: The model can determine memory bandwidth re-
quired and the number of memory banks so that enough
overlapping requests can be serviced. We used the model
to analyze our different workloads by varying the number
of tiles and number of memory banks. Figure 5 shows this
analysis for one benchmark courtyard for a single-issue 4-
way multithreaded core, and the behavior was largely similar
for all benchmarks. With 64 banks, the performance is within
50% of ideal (no contention). This gives us a realistic system
of 4 DIMMs with 16 banks each.
Interconnection network: Most of the contention for this
workload is at the memory system and not the mesh network
on chip, since assuming a shared bus to model worst case
network contention, results in the memory system being the
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Core type Performance (millions rays/sec) #Tiles #Cores
Ideal Realistic

Ave. Range Ave. Range
1-issue, no SMT 37 16-62 42 19-66 16 128

1-issue, 4 threads 82 33-138 43 13-74 16 115
2-issue, no SMT 34 15-57 26 12-41 10 78
2-issue, 4 threads 82 36-137 41 13-70 8 65

Table 5. Full system performance and area for all scenes.
We recommend 1-issue, 4 threads as the best configuration.

bottleneck and not the network.
Full system performance: With the number of memory
banks specified, our full system model can make performance
projections for different core configurations and scenes which
are shown in Table 5 as an average and range across our five
benchmark scenes. Columns two and three show “ideal” per-
formance achieved by naively scaling the performance for one
tile to 16 tiles (or as many that will fit), ignoring contention
for shared resources. Columns four and five show realistic
performance with the 4-DIMM memory. Our conservative
memory model projects that we can sustain between 13 and
74 million rays/second, and the ideal model suggests 33 to
138 million rays/second.
Full system area analysis: Using die-photos of other pro-
cessors we built an area model for the tiles and the full chip.
For overheads of multi-threading, we use methodology from
academic and industry papers on area scaling [19]. The area
for our baseline 1-issue core is derived from a Niagara2 core
scaled to 22nm, and we assume a 12% area overhead for
multi-threading for 2-threads, and additional 5% per thread.
In our area analysis, the additional area of the 4-wide FPU
compared to Niagara2’s FPU is ignored. We assume an 110%
overhead when going from 1-issue to 2-issue, since in this
model we double the number of load/store ports also and
hence the L1 cache sizes. The cache size is fixed at 2MB for
all designs and this includes the cross-bar area between the
cores and the cache. Columns 6 and 7 in Table 5 show the
number of cores of each type that will fit on a 240mm2 chip.
With single-issue cores, we can easily fit 16 tiles, and about
half with two issue cores.
Summary: Overall, going to dual issue does not provide
significantly higher performance and single-issue, 4-way mul-
tithreaded cores seem ideal. Single-issue cores without SMT
seem to match the 4-way SMT cores at the chip-level, because
of insufficient memory bandwidth to feed the threads. At
the chip-level, memory bandwidth is the primary bottleneck.
While our final performance results do not outright exceed
the required 100 million rays/second for every scene, the
flexibility and potential for further architectural optimizations
show this is a viable system.

6. Related work
Recently, a few application-driven architectures have been

proposed. Yeh et al. have proposed ParallAX, an architecture

specialized for real-time physics processing [42]. Hughes
et al. recently proposed a 64-core CMP for animation and
visual effects [10]. Kumar et al. have proposed an architec-
ture called Carbon that can support fine-grained parallelism
for large scale chip-multiprocessors [14]. Yang et al., de-
scribe a scalable streaming processor targeted at scientific
applications [41]. Clark et al. have proposed a technique
called liquid SIMD that can abstract away the details of the
data-parallel hardware [4]. Sankaralingam et al. developed
a methodical approach for characterizing data parallel ap-
plications and proposed a set of universal mechanisms for
data parallelism [29]. All these designs follow the flow of
workload characterization of an existing application driving
the design of an architecture. Our work is different in two
respects. First, we co-design future challenge applications
and the architecture to meet the application performance
requirements. Second, we provide a more general purpose
architecture and new quantitative tools to support the design
process. Embedded systems use similar hardware/software
co-design but for building specialized processors and in much
smaller scale. Architecture-specific analytical models have
been applied for processor pipelines to analyze performance
and power [22], [37], [13], [34], [43], [8], [27]. These models
have also been used for design space exploration and rapid
simulation [12], [11], [16], [3], [6], [24].

7. Discussion and Future work
Building efficient systems requires that the software and

hardware be designed for each other. Deviating both hardware
and software architectures from existing designs poses a
particularly challenging co-design problem. The focus of this
paper has been the co-design of the software, architecture, and
evaluation strategy for one such system: a ray-tracing based
real-time graphics platform that is fundamentally different
from today’s Z-buffer based graphics systems.

Our software component (Razor) was designed to al-
low graphics and scene behavior to be exploited by hard-
ware via fine-grained parallelism, locality in graph traver-
sal, good behavior of secondary rays, and slow growth
in memory by virtue of kd-tree duplication. To solve the
application/architecture “chicken-and-egg” problem, we im-
plemented Razor on existing hardware, in our case SSE-
accelerated x86 cores and built a prototype system using
available technology with effectively eight cores. This pro-
totype allowed us to perform detailed application character-
ization on real scenes, something impossible on simulation
and meaningless without an optimized application.

Closing the development loop with design, evaluation and
analysis of software’s behavior on our proposed hardware
architecture was accomplished via a novel analytical model
that provided intuition both for the architecture and the
application. For example, an important application design
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question was to decide whether to duplicate or share the kd-
tree data structure. Our 8-core prototype hardware system
does not scale and our simulator for proposed hardware is too
slow to run the full application to completion. Only the model
could reveal that duplication overhead is manageable, thus
relaxing coherence requirements for the architecture. To de-
velop the model, we combined data gathered on the optimized
prototype using tools like Pin and Valgrind with simulation-
based measurements of cache behavior and instruction fre-
quency. With this co-designed approach, we have shown
the raytracing-based Copernican universe of application and
general visibility-centric 3D graphics is feasible. However,
this work represents only a first cut at such a system design;
there is more to explore in the application, architecture, and
evaluation details.
Application: Razor is the first implementation of an aggres-
sive software design incorporating many new ideas, some of
which have worked better than others. With further iterative
design, algorithm development, and performance tuning, we
believe a ten-fold performance improvement in the software
is possible. Non-rendering tasks in a game environment
and more generally irregular applications map well to the
architecture and require further exploration.
Architecture: There is potential for further architectural
enhancements. First, the length of basic blocks is quite large
and hence data-flow ISAs and/or greater SIMD width can
provide higher efficiency. Second, ISA specialization, beyond
SIMD specialization targeted at shading and texture compu-
tations could provide significant performance improvements.
Improving memory system will be most effective, and 3D in-
tegrated DRAM could significantly increase performance and
reduce system power [17]. Physically scaling the architecture
by varying the number of tiles, frequency, and voltage scaling
to meet power and area budgets provides a rich design space
to be explored.
Evaluation: Our analytical model enables accurate perfor-
mance projections and can even be used for sensitivity
studies. In addition, it can be extended to accommodate other
Copernican architectures, like Intel Larrabee [30].
Comparison to GPUs and Beyond Ray-tracing: The pro-
cessor organization in Copernicus is fundamentally different
from conventional GPUs, which provide a primitive memory
system abstraction while deferring scene geometry manage-
ment to the CPU. Architecturally, the hardware Z-buffer
is replaced with a flexible memory system and software
spatial data structure for visibility test. This support enables
scene management and rendering in one single computational
substrate. We believe GPUs are likely to evolve to such a
model over time, potentially with a different implementation.
For example, secondary rays could be hybridized with Z-
buffer rendering. Our system is a particular point in the
architecture design space that can support ray tracing as one

of potentially several workloads.

8. Conclusions
Modern rendering systems live in a Ptolemic Z-buffer

universe that is beginning to pose several problems in provid-
ing significant visual quality improvements. We show that a
Copernican universe centered around applications and sophis-
ticated visibility algorithms with ray-tracing is possible and
the architecture and application challenges can be addressed
through full system co-design. In this paper, we describe
our system, called Copernicus, which includes several co-
designed hardware and software innovations. Razor, the soft-
ware component of Copernicus, is a highly parallel, multi-
granular, locality-aware ray tracer. The hardware architecture
is a large-scale tiled multicore processor with private L2
caches, fine-grained ISA specialization tuned to the workload,
multi-threading for hiding memory access latency, and limited
(cluster-local) cache coherence. This organization represents
a unique design point that trades off data redundancy and
recomputation over synchronization, thus easily scaling to
hundreds of cores.

The methodology used for this work is of interest in its
own right. We developed a novel evaluation methodology
that combines software implementation and analysis on cur-
rent hardware, architecture simulation of proposed hardware,
and analytical performance modeling for the full hardware-
software platform. Our results show that if projected im-
provements in software algorithms are obtained, we can
sustain real-time raytracing on a future 240mm2 chip at
22nm technology. The mechanisms and the architecture are
not strictly limited to ray-tracing, as future systems that
must execute irregular applications on large scale single-chip
parallel processors are likely to have similar requirements.
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