Combining Single and Packet Ray Tracing for
Arbitrary Ray Distributions on the Int8l MIC
Architecture

Carsten Benthin Ingo Wald Sven Woop Manfred Ernst William RriMa
Intel ® Corporation

Fig. 1. Several examples rendered with our hybrid ray trasicigemehairball (2.8M triangles) with ambient occlusionpnferencg218k triangles) with
Whitted-style reflectionsfairy (174k triangles) with 8-bounce path tracing, and a 4.3Mngla car model with path tracing including different BRDFs like
Glass, Car Paint, Chrome, Plastic, and Lambertian, lit frontBX®RI environment light source.

Abstract— Wide-SIMD hardware is power and area efficient, lanes perform the same arithmetic operation together nfost o
but it is challenging to efficiently map ray tracing algorithms the time. When tracing coherent rays, it is relatively stigig
to such hardware especially when the rays are incoherent. The forward to achieve high SIMD utilization. One common tech-

two most commonly used schemes are either packet tracing, . K ket traci h ¢ | statk
or relying on a separate traversal stack for each SIMD lane. nique, known as packet iracing, shares one traversal s a

Both work great for coherent rays, but suffer when rays are Performs the node/triangle intersection test for all N rpjs
incoherent: The former experiences a dramatic loss of SIMD All rays are forced to follow the same traversal sequence by
utilization once rays diverge; the latter requires a large local always descending a subtree if any of the rays wants to saver
storage, and generates multiple incoherent streams of memory the subtree, using masks to track which raysaative Packet

accesses that present challenges for the memory system. S . - - .
In this paper, we introduce a single-ray tracing scheme for tracing is particularly efficient oexplicit SIMD architectures

incoherent rays that uses just one traversal stack on 16-wide (Where the SIMD length is exposed in the instruction set)
SIMD hardware. It uses a bounding-volume hierarchy with a because it does not require scatter/gather operations, and
branching factor of four as the acceleration structure, exploits pecause the mix of scalar and vector operation utilizes both
four-wide SIMD in each box and primitive intersection test, and ¢ajar and vector units. However, performance degraddg bad

uses 16-wide SIMD by always performing four such node or . P .
primitive tests in parallel. We then extend this scheme to a once ray divergence becomes significant, eventually regchi

hybrid tracing scheme that automatically adapts to varying ray @ State where only very few of the SIMD lanes are still
coherence by starting out with a 16-wide packet scheme and active.

switching to the new single-ray scheme as soon as rays diverge. An alternative is to use the SIMD unit to trade inde-
We show that on the Intef® Many Integrated Core architecture pendent raysThat is, each SIMD lane has its own ray and

this hybrid scheme consistently, and over a wide range of scenes.t ¢ | stack. This techni . ticularl
and ray distributions, outperforms both packet and single-ray 1S OWN traversal stack. This technique is particularly yap

tracing. on today’s GPUs, which have an implicit SIMD architecture
Index Terms— Ray tracing, SIMD processors that is well matched to it [3]. In &ingle program multiple
data(SPMD) programming model such as CUDA or OpenCL,
. INTRODUCTION this even gives the appearance of each SIMD lane running

Ray tracing is a computationally intensive workload, sits own scalar program. However, SIMD efficiency loss still
it is important to implement it efficiently. On modern pro-occurs if different SIMD lanes execute different code paths
grammable architectures such as CPUs and GPUs the key example, if some rays want to descend further into the
to reaching this goal is to efficiently use those architextur acceleration structure but others want to perform a rayfglie
SIMD units. SIMD units provide high performance and powentersection test, some of the SIMD lanes will be idle [3].
efficiency by amortizing the hardware for caches and in- There are two more subtle performance challenges associ-
struction decode over many arithmetic units. Many modeated with theN-independent-rayalgorithm. First, it needs a
hardware architectures have wide SIMD units: 8-wide AVXarge working set foN independent stacks and temporary vari-
on Inte® CPUs [1], 16-wide SIMD on the Int8 MIC ables. This requires lots of (vector) registers and lotsooél
architecture [2], and 16-wide (or greater) SIMD on GPUs [3ktorage, which in turn lead to costly spilling to device memo

Using wide-SIMD hardwarefficientlycan be challenging, and/or to a reduction in the number of threads available for
since the algorithm must be organized such that all SIMRtency hiding. Second, every memory access translates to a

Lane 0 Lane 1 Lane 2 Lane 3

BB 2 |13 |14]1s
‘0 ‘ 1 ‘ 2 ‘3 ‘4 ‘5 ‘6 ‘7 Ray Tracinggoes back to the seminal work by Appel
‘Xo‘Yo‘Zo ‘WO‘Xl‘Yl‘Zl ‘Wl_ et al. [8] and Whitted et al. [9], and is often used in the

e context of advanced rendering algorithms as pioneered by
e oce ild Node Cook [10], Kajiya [11], etc. For an introduction to ray tragi
Leaf Triangle 0 | Leaf Triangle 1
see for instance [12]. Making ray tracing fast requires the

o3 We v L6-wide SIMD redister | 4l sl use of a goodacceleration data structursuch as grids, kd-

folg.r-w-ide Sell\\/IlII(DEV\Ex?y,z,WV;”fgr four nlf(?elzsrirspec?ir\;zlsyoprimfﬁeirr?teerr]ssjezltinogn trees, Or_ bloundmg volume h_|erarch|es (BVHS) (e'g" [13]’

tests in parallel; shared data like ray and traversal stask ho be stored [14]). Building good acceleration structures is usuallynelo

only once. by applying thesurface area heuristic (SAHas originally
introduced by Goldsmith and Salmon [15], and later refined
by lots of others (see, e.g., [13], [16]).

sxddre With both CPUs and GPUs using ever wider SIMD designs,

scatter/gather operation. When rays are coherent, the hers had to | i alv focUSBNID i
generated by all lanes will be adjacent, but when not, théﬁsearC ers had to Increasingly focu ray tracing For

will be very different. HandlingN totally divergent memory t is_purpo;e, Wald et al. [4] propos_ed the conc_eppm‘,ket
accesses in each iteration however is a challenge for dfReing, which works by traversindy different rays in parallel

memory system, e.g. the number of concurrently open DRA ough the acceleration data structure by conservatigely

pages (and times to open/close such pages), number of Ti@nding into subtrees and de-activating those rays thaldwo

entries, etc. These factors explain why the performance lgrually not have traversed a subtree. This method maps well

the N-independent-rayslgorithm degrades significantly onlto cuSrIrlslrE)t C'_T,U ‘?'83'9”;' but for incoherent rays suffers from
modern GPUs as rays diverge [3]. ow utilization when too many rays get inactive.

h) . | h) hether i . To improve SIMD utilization different researchers have
T ese conS|der§t|ons ead to the questlo.n.w ether 1t} %ked into using packets much larger than the SIMD width,
possible to use (wide-)SIMD hardware to efficiently trace And compactingthe still-active rays at different points in

si_ngle ray at a time: One approa_lch isto use a bound?ng volumﬁe [17], [18], [19]. A hybrid approach that uses compattio
hierarchy (BVH) with a branching factor and leaf size equal |5 46 ray sets and uses a similar idea of a fall back to sing|
to the SIMP width (anMBVH acc_elerauon structue(5], ray tracing in case no coherence is detected was presented
[6]. [7]. T,h's apProaCh uses N—w!de SIMD to perform be Tsakok et al. [20]. However, compaction usually comes at
node or triangle intersection tests in parallel for a single a not inconsiderable cost (in particular on architecturégd w

and does ”‘?t rely on ray C_oher_ence_ a_‘t all. However, _trpélatively small caches), and for really incoherent rayd an
approach quickly loses algorithmic efficiency for bran‘m'”complex scenes produces only modest benefits.

factors greater than four and with branching factors of 16 or 5\VD single-ray tracing (SSRT)as first applied by Hurley

greater is significantly worse than packet tracing if theve bt al. [21] to intersect multiple primitives in SIMD in an eth
even a small amount of ray coherence [7]. erwise scalar kd-tree traverser, and by Christensen e22]. [

A promising approach would be to use a branching fact@pplying this same concept to BVHs—where it can be applied
of four, but use additional parallelism within each childeie to node traversal steps_has been independenﬂy proposed by
test to better utilize a wider SIMD unit. We present such aDammertz et al. [5], Ernst et al. [6] and Wald et al. [7].
approach in this paper. The key idea is to view the 16-wide The |nteP Many Integrated Core (Int& MIC) Architec-
SIMD hardware not as 16 independent lanes, but rather e is a many-core x86 architecture for high performance and
four lanes of four elements egchnd use this to processur throughput computing. It is designed for highly paralleptp
nodes respectively four primitives in parallel, using 4@ cations which have the highest demands for compute power
SIMD for each node/primitive intersection test (see Figdye znd memory bandwidth, and tHénights Ferry (KNF) Soft-
This allows for effectively using wide SIMD for a single rayware Development Platform is its first incarnation [2]. Thtfi
without having to rely on an inferior data structure, andh"’itgenerally available Int& MIC product callecknights Corner
less strain on the memory system than fkéndependent-rays (KNC) has already been announced [2]. Besides significant
would produce. We show that on the IfffeKnights Ferry PCI performance improvements, KNC shares many architectural
card [2] that we use for evaluation, this technique outper® properties with the KNF, and the algorithmic improvements
packet tracing for incoherent rays. proposed here will carry over to it.

This per-lane approach also has some overhead, and forKNF's many-core processor (calleflubrey Isl@ consists
coherent computations is not as efficient as processing df632 x86 cores, each having fully coherent L1/L2 caches
different rays. Thus, we also extend our technique to a dybi(i32K/256K), and each running 4 threads for latency hiding.
scheme in which we generate and shade rays in packé&ach x86 core isuperscalar having both a scalar and a 16-
trace them as packets as long as they are coherent, and thede SIMD unit that can both issue in the same cycle (a
on-the-fly, switch to the single-ray scheme when the raysocess calledpairing). This is favorable for our approach
diverge. On our platform this hybrid scheme is superior to that shared data can be kept in scalar registers, and their
both packet and single ray tracing, and achieves condigterdssociated scalar operations can often be issued in pamlle
higher performance than either of those techniques. other vector instructions.

II. PREVIOUSWORK

Of particular interest to this paper, the 16-wide SIMD unit These free loads and swizzles do come with some restric-
is organized into fourdanes of four elementseach, and is tions, though: swizzles are free only for intra-lane swaszl
programmed using a three operand 16-wide SIMD instructi@md free loads require data to be aligned to 64 bytes for vecto
set that also supportmasking (for predication); the third loads, and to 16 bytes for 4-to-16 load-broadcasts, reispsct
operand can be either a register, or a memory address. In case
it is a register, the instruction set allows certfize swizzlsto A. Data Organization
be applied to the four elements of each lane (eygw— yyyy The key lesson to be learnt from this example is how crucial
or xyzw— yxw3; if it is a memory address, it allows for aproper data organization and alignment are to our apprdach:
free load from this address (including a 1-to-16 or 4-to-lgeach the 3 instructions we have assumed ghatas already
broadcast, if desired). Those modifiers are called freeusecain a register, and that all folB; vectors can be loaded together
they are an integral part of the given vector instructiond arwith a single free load; if this was not the case the cycle toun

do not require any additional issue cycles. would be significantly higher: For example, if the fd8jrcame
from different memory regions we would require four exlici
1. ALGORITHM OVERVIEW loads that together would more than double the instruction
count.

Inte_l® MIC's 16-wide SIMD can also be viewed as peing 1) Ray Data: Though we eventually operate on individual
organized into foutanesof four element®ach. The core idea rays, rays are generated and shaded in packets, using a
of our approach is to exploit this organization to realize l}ructure-of-arrays (SoA) format. For the single-ray bestt

efficient way of traversing single rays through a BVH with @4 yjangle test kernels, however, we require a layout iichvh
branching factor ofour (rather than 16, like the SIMD width). the respective ray's originof g), direction i r), and pre-

Th|§ aims at t‘_NO separate gqals: . .computed 1/directionrcp) are pre-loaded into one register
First, reducing the branching factor from 16 to 4 S'gn'f'each kyz coordinates replicated into all four lanes).

icantly increases the efficiency of SSRT itself: a sixteen- Upon entering traversal we first create an array-of-strestu

wide BVH is _significantly less eff_ective at culling than_ &A0S) copy of the given packetsr g, di r, andr cp values,

two- or four-wide BVH [7]; even with the best-known buildgom \which we can then load-and-broadcast each ray’s data

algorithms the average node and leaf utilization is ratbert | \henever so required. All of the ray’s hit data can stay in

and having to perform 16-wide reductions after every noGfe original packet format, and modified there whenever an
test and triangle intersection carries a significant peréorce ,iarsection oceurs.

overhead (measured to be up to 50% vs. a four-wide BVH). 2) (Quad-) BVH Nodes:During traversal, we frequently
Second, operating on a four-wide BVH (also callRdad- haye to perform four ray-box intersection tests with a nsde’
BVH or QBVH) allows for performing efficient packet traver-foyr children (stored as AABB). We perform one node test
sal on exactly the same data structure used for single-rgy each lane, using each lane’s elements to process the Xy,
traversal (packet traversal is roughly equally efficienttioth 504 2 coordinates in parallel (see Section IV-C.1). Giverhsu
binary and QBVHs, but significantly less efficient for a 163 '|ane-based’ kernel, a good data layout for a quad-node is
wide BVH). This then allows for a hybrid traversal schemg, store all four nodes in one compact memory region, with

(see Section V) in which we use packet tracing as long @ first cache line dedicated to the four min coordinates, th
rays are coherent, and switch to single-ray traversal aB SQ@cond to the max coordinates.

as rays are detected to diverge. struct QuadNode {

IV. SINGLE-RAY TRAVERSAL struct { float3 min3;uint32 data; } min[4];
) _ struct { float3 max3;uint32 unused; max[4];
For our QBVH-based single-ray traversal approach we viey

the 16-wide registers as four 4-wide registers, and proce
four nodes respectively four triangles in parallel using- P&,
lane operations. For example, given a vedioand 4 vectors

B; in f1 oat 4 format, we can compute the four dot product

R this layout the four min (and max) coordinates are aligned
0 64-byte boundaries, and can be loaded into the lanes of a
vector through a single free load. The otherwise unusedHour
Blement in each of the nodes’ min lanes stores additional

<ABi >via information: Depending on whether the given child node is
VA = load(&A,BROADCAST4X16); an internal or a leaf node, which is indicated by the most
dot = mul(vA, free load(&B,LOADI6)); significant bit indata, an offset to either the child or to the first
dot = add(dot, freeswizzle{yxwz}(dot));

triangle of the respective leaf is stored in the remainirtg.bi
Additionally, the two least significant bits hold the numiwér
Since both loads and swizzles are “free” in this coderiangles in case of a leaf node.
assuming thatvA had been in registers already (as a ray Since this layout forces all inner nodes to haactlyfour
would usually be) we would be able to compute these foahildren those nodes with less children have to be padded
dot products with only three instructions. This is an up to 4 with empty nodes. Padding introduces a memory overhead of
lower throughput than computing 16 separate dot productsughly 25% for node memory (see Table I); however, since
in the “packet” (structure-of-arrays layout) approach ighh a QBVH has significantly fewer nodes than a binary BVH we
could be done with the same number of instructions)—but &ill spend less on node storage than a corresponding binary
an up to 4 win if most of these 16 elements were inactiveBVH would have.

dot add(dot, freeswizzle{zwxy}(dot));

. Scene tris | quad-nodes w/ #childre avg util. of
3) Triangle Data: The friangle intersection kernel also H > 3 47 quad-node leaf
operates on four different triangles—one per lane—in pdralle fairy 174k 8k 4k 11K 78% 90%
To avoid having to gather the four triangles’ vertices from ﬁonffﬁnc iggt 12:: gll: 1$|k< ;%0 3(2)2;0
. . alrpal (] (]
different memory locations we use a separate array thagstor .- 2355k | 200k 95K 270k 78% 90%

for each triangle all required data in a single cache lizei G
data block. This is similar to Wald et al [4] and Aila et al [3 TABLE I. Average quad-node/leaf utilization for our constted QBVHs and
ata : IS IS simi [4] ! []'d|str|but|on of partly filled quad-nodes/leaves. Averagmdrnode utilization

) h p g 0
struct Triangle { is 78% and leaf utilization over 90%.

struct { float3 pos; uint32 quantN;} vtx[3];

float3 gNormal; uint32 shaderlD; - . . -
¥ always splitting until the SAH itself indicates a leaf. Even
when applied to a binary BVH this modification degrades SAH
This triangle record holds the triangle’s three verticee(o cost by only about 5%: while at the same time reducing the
per lane), leaving the lanes’ fourth components of eactexert, mper of nodes by roughly half (see Table I1). Our QBVH
to store additional data such as vertex index or discretizg8y H 1,) has exactly the same number of leaves as the binary
vertex normal. In the rest of the cache line-sized data blog/H with leaf threshold of 4BV H.14), but in addition has 33-
we additionally store the geometry normal and shader IDhEaggoy, fewer internal nodes, resulting in an even lower SAH cost
vertex within the data block is aligned to a 16-byte boundagh node count (see Table I1). These statistics indicateotita
and can be loaded into a register lane by a single instructiQfta structure does not have any significant overhead ceupar
Triangles are stored in the same order as they appear in {§€, traditional binary BVH; on the contrary, it should be at

Q_BVH’s_Ieaves, _thus each leaf can address all of its triangl@ast competitive evewithout applying our SIMD single-ray
with a single pointer and count value. tracing scheme.

Since we store triangles individually we do not have to
perform any padding to multiples of four (saving memory). Scene ‘
The triangle intersector will always process trianglesnougps

BVHT, BVHT4 QBVHT4
nodes SAH | nodes SAH| nodes SAH

. . , . . fairy 213k 33.2| 108k 33.3| 709k 235

of four; instead, for partially filled leaves we simply indlel conference|| 309k 49.4| 178k 51.0| 114k 354
triangles from a neighboring leaf. hairball 2.4m 505.0| 1.8m 493.0| 1.2m 386.5
car 53m 132.0| 2.8m 1325| 17m 96.6

. . TABLE Il. Relative SAH cost and node count for a traditiotéhary BVH
B. QBVH Construction and Qua“ty without BV H_r1) and with an explicit leaf/triangle threshold of B\(H_14)

Building BVHs with branching factors of more than twoand for our QBVH with a similar thresholdQBV H r4).
has been addressed previously [5], [6], [7], and in fact, a :
such construction me?hod canyb([a]us[egi 1[01 our approach.rah Traversal and Intersection
our implementation, we use a top-down construction: As long !N the following we will sketch the three major components
as a quad-node has less than four children we take the cififdthe traversal and intersection: lane-based SIMD node in-
with the biggest surface area (thus greedily minimizing tHgrsection test, lane-based SIMD triangle intersectist) &nd
SAH early up in the tree), try splitting it into two, and iteea control flow. The pseudo code for the complete traversalétern

Once a quad-node is fully built, we descend into each of i& given in Section VIII,
non-leaf children, and build those recursively. 1) Node Intersection KernelThe node intersection kernel
For the splitting process we use a standard SAH binni,ﬁ@rforms all four box’s slabs tests in parallel. For a given
process [23], [24], [25], with the only exception that weatee 00X [Dmin,bmad, the slabs test first computes, for each di-
a leaf as soon as the number of triangles drops to or belowensiond, the ray's distance to that box’ lower and upper
In fact, we decided to actuallnforcea leaf size of four or less bounding planesio g = (bmind — 0rga) *rcpg; tupa = - -, then
by chopping larger leaves into chunks of four (using simply t US€S these to get the entry and exit distances of this slab
input order). This case is extremely rare and does not intred tin.d = MiN(tiod thi.d); toutd = MaXtio,d.thia), and finally com-
any measurable degradation in QBVH quality. On the othBHteS the ray’s final entry and exit distance as the maximum
hand, knowing thatll leaves have four or less triangles, théeSpectively minimum of all entry respectively exit distas
single-ray traversal kernel can immediately perform a Isingtin = MiNgtind; tout = MiNgt 4. .
four-triangle intersection when reaching a leaf, withonya FOr our SIMD box test, we process all four boxes in
additional looping or branching code at all. p_arallel_(one per lane), with each lane processing its bued
The average node and leaf utilization we get from this buigimensions:
is rather high, at>75% for inner quad-nodes, and over 90% t_lo_d
for leaves (see Table I). These numbers compare well to thoset-hi_d
reported by [7] for a 16-wide BVH (around 65% and 70-75%, t-In -d
respectively) despite their more sophisticated build essc t-outd
The expected SAH cost for our QBVH also compares well Then, computing the final,,toy: requires only horizontal
to a traditional binary BVH: Since we do not perform anynin/max-reductions inside the four lanes (using free sle®)z
additional merge/collapse steps that trade quad-nodeatitiin and comparing each lane’s first element tigr< toy: gives us
for BVH quality the only difference to a traditional SAHthe bit mask indicating which of the four boxes had a valid
builder is that we use a leaf threshold of four rather thantersection:

mul(sub (org4 , freeload (nodemin)),rcp4);
mul(sub (org4 , freeload (nodemax)) ,rcp4);
min(t.lo_d , t_hi_d);
max(tlo_d ,t_hi_d);

t.in = max(tin_d , t.in_d{yxwz}); stack compaction. In addition, Inf8IMIC’s aforementioned
Ifi)nut = max(tin_d , t.in{zwxy}); pairing feature offers a potent way of hiding scalar control
hit mask = cmple (0x8888 .in t_out): flow o.perat|ons. For example, since popping from stack uses
/I — hit.mask = 0x8888 & tin[i] ' <=’ t_out[i] only simple scala_lr operations we can hide any aljd all popping
cost by performing aspeculativepop operation in parallel
Note in particular that through our node layout and prao the node intersection test; in which case all scalar pop
loading and replicating of the ray, this can all be done witiistructions get paired with the node test's vector ingtoms
free loads and free swizzles, with no scalar code at all. (a specially markedsentinel leaf-node is used to mark the
2) Triangle Intersection Kernel:As triangle intersection bottom of the stack). If the hit-mask is zero we can directly
kernel we use a modified variant of the intersection test lypntinue the top-down traversal with the already poppecdnod
Shevtsov et al. [26]. As the QBVH leaves have at most four If the hit-mask is non-zero, we first count the number of
triangles, we use a kernel that always processes four téangits set in this mask. Looking at the probability distritautiof
without any scalar loop code at all (for leaves with lessow often a node has 0,1,2,3, or 4 intersections (see Table II
triangles we simply include the next leaf’s triangles). Eme we can then optimize for the most common case of 2 or less
then computes a different triangle’s intersection teshgithe nodes by using a separate code path that determines thetclose
lane’s four elements to process three dimensions in paralighild with at most one (scalar) comparison rather than a full
and using free swizzles for any reduce operations (e.g., dross-lane reduce. A costly cross-lane vector reductidimtb
dot products). If at least one lane had a successful triangt@ closest child is then only needed in the unlikely “3 or
intersection, we can use horizontal operations across lame more” path. Obviously we also design the code to pair the
determine which of the lanes had the closest intersecti@; common code path wherever possible.
corresponding lane’s values are then written back to this ray
intersection data. # hit nodes || shading | © 1 2 3 4
Unlike the box test, our triangle intersection kernel first Sonference Z-bounce diffuse | 22.5 424 252 7.9 20

N N . g) conference 8-bounce diffuse 221 430 253 7.8 17
has to “gather” the four triangles’ data (using masked load+airball ambient occlusion (AQ)| 17.5 46.0 255 7.3 3.7

and'bro_adca‘St,s) from the f‘?“r triangle rec_ords S(:"(:1L1H5ﬁtia‘TABLEIII. Distribution (in %) of number of child nodes hit ding single-ray
stored in memory (see Section IV-A.3). This costs 16 exttgversal for different ray distributions and scenes. Ribyi§0% of traversals
instructions (loading 16< 16 bytes) which is between 20-30hit two or less nodes.

% of the total kernel instruction count.

3) Control Flow: On a high level, traversal works by
maintaining a stack of yet-to-be-traversed nodes; for eacke The ultimate goal of our single-ray tracing scheme is to
we store two 32-bit values: the 32-hitit a field describing be used only for handling incoherent rays in a hybrid tracing
the respective node, and the distance to that subtree. aila f scheme. Before looking into such a scheme it is helpful to
binary BVH we do not maintain a fully sorted stack but insteafirst analyze the performance of the single-ray kernelfit$el
greedily descend into the child with the closest hit diseancTable IV we compare our single-ray kernel's performance to
and pushing all others onto the stack. Note that waadsort a QBVH-based packet tracer (16 rays per packet). For all ray
the pushed nodes by hit distance as in 90% of all travergas stelistributions tested, the maximum difference in perforogn
only 2 or less nodes are hit (see Table Ill). In this commdpetween using a binary BVH and a QBVH for packet tracing
case picking the closest child is the same as sorting and f@rs been measured to be less than 3-4% and is therefore
those 10% of the cases where more than 2 nodes were hitvegligible. In each traversal step the QBVH-based packet
may push (some) nodes in reverse order. Compared to futhacer tests 16 rays against each of the four nodes. For the
sorting the distances in the 2 or more nodes case, the maximtiiangle intersection, 16 rays are tested against onegligan
introduced overhead of 3% additional traversal steps (fer t For the sake of simplicity, in this preliminary evaluation
ray distributions in Table IIl) is negligible. we intentionally compare only the two most extreme cases

Stack CompactionEvery time an intersection is foundof ray distributions: highly coherent primary rays, andiyg
all stack-entries with a distance greater than this hitadis¢ incoherent rays from an 8-bounce diffuse path tracer (see
are no longer valid. Rather than discarding such nodes whgection VI-D). To minimize the masking effect of high shaglin
popping them off the stack we explicitly perform stack cost both cases use the minimum amount of shading.
compactionevery time a leaf yielded a valid intersection:

D. Performance

Using Inte® MIC's compaction instructions this is rather H coherent (primary) incoherent (8-bounce-diffuse)
P/S siP| P/IS sip
cheap. hairball 2.43x 041 0.60x 1.65
Efficient Implementationin a packet tracer, control flow fairy 3.44x 0.29 0.58x 1.71
3.84x 0.26 0.71x 1.40

can be amortized over all rays, and its cost is low compareg°nference

to box and triangle intersection kernels. For single-ragitrg TABLE IV. Performance ratios between single-ray (S) and pattacing (P),

where Fhe four box in.te_rslec.:tion tests require only a dOZ.e(ﬂ coherent (primary) rays and incoherent (8-bounce d#fusys. Single-
vector Instructions, minimizing scalar control flow cost isay tracing outperforms packet tracing for incoherent réys,is significantly

crucial. Several examples of cutting down on control flowtco§/ower for coherent rays.
have already been mentioned: Using a fixed leaf size of four toNot unexpectedly, Table IV confirms that our single-ray
remove all leaf loop-code; not sorting pushed nodes; antjustracing scheme is significantly faster than a packet trager f

incoherent rays, but significantly slower for coherent rde scene render traversal intersection furm
yS, g y SIO oy mode | packet single packet single switches
coherent rays, the packet tracer is hard to beat: it utilizes Tairy primary | 85% 15% | 80% 20%| 0.7
almost every SIMD element in every vector instruction, i ca faW&; o bAO ggj’ ?ngo iggﬁo g;‘zf 182-44
. . conference -bounce () 0 0 (1] .

amortize addressing overhead, control flow, etc. and dveral | ipon AO 3% 87%| 17% 83%| 186

makes very good use of the hardware. For coherent rays, thetay primary | 98% 2% | 92% 8%

single-ray scheme is significantly slower42 3.8x): even in falf); o 6’\0 ;el_)gj) i%ﬂ g?gf gg‘;f
conrerence, -bounce 0 0 0 ()

the best of cases we use only 12 of 16 vector elements (4 lanes, ...~ 20 60% 40% | 33% 66%

times 3 dimensions), and despite all our efforts to reduck an _ _ _ ,
hide control flow cost wherever possible a significant calt s TABLE V. Top: relative number of box and triangle interseati@sts done

- 3 A p g in packet vs. single-ray mode for our hybrid tracing, and agernumber of
remains (at 11 instructions for four box tests even a handwitches performed during traversal (switch thresholds@&)t For incoherent

of cycles for control are significant!). For incoherent raygay distributions, the majority of all intersection tests afone in single-
mode. Bottom: relative distribution of totaer ray box and triangle

. . o
however, the Smgle_ray scheme performs just as well .as fgﬂ\érsection tests (taking packet utilization into acapuBven for incoherent
coherent rays, and eventually outperforms packet tracing fay distributions a large fraction of ray box and triangleeisection tests are
14—-1.7x. still done in packet mode.

V. HYBRID PACKET/SINGLE-RAY TRACING going down all the way to a leaf node, but nevertheless we

As just shown the single-ray scheme itself is faster thdrave chosen this approach as it is slightly better in practic
a packet tracer for incoherent rays, but slower for coherefite actual switch overhead in terms of instructions is mathe
ones. However, for practically relevant applications rays low as approximately only a dozen instructions are requioed
neither fully coherent nor fully incoherent. Our solutiom t reload either packet or single ray data from cache into texgs
this is to use a hybrid scheme in which packets are us@dtersection data is always kept in cache memory).
for coherent rays, and single rays for incoherent ones. At it The switch to single-ray tracing always applies only to the
simplest, this can be achieved manuallycalling packet code current subtree; any other subtree popped off the stack at a
for rays that ar&knownto be coherent (such as primary rayslater time will again decide whether it is to be processed in
and primary shadow rays to a point light), and single-rayecogbacket or single-ray form. Thus, we might actually switch
for everything else. back-and-forth between packet and single-ray mode several

However, while some rays are typically coherent (or not)imes during traversal, and subtrees for which the packet is
others are more difficult to classify: For example, many butill coherent enough will still be processed in packet form
not all of the reflection rays in the car model (see Figure &) asee Table V).
coherent; the degree of coherence for shadow rays to an areg/hile the method itself is fully automatic, we still have
light source depends on the size of this light source; and ev® determine the parameter at which we switch from packet
shadow rays to an HDRI environment map depend on hawode to single-ray traversal mode. To do this, we have taken
diffuse vs. directed that illumination is. Consequentlynare a variety of scenes and ray distributions, and measured the
automatic way of combining these techniques is desirablg/brid algorithm’s performance for each of the 16 possible
Fortunately, since our data structure can be usedbfith values. Based on the these experiments (Figure 4 shows
packet and single-ray tracing we do not actually have the results for two example scenes, while all other scenes
guessa packet's coherence at all, and can, in fact, switagfhow similar behavior), we adopt a threshold of 7, which is
between packet tracing and single-ray tracing at any time d@nsistently within 5% of the optimum performance across al
mid traversal. ray distributions and scenes.

We start out with a traditional, 16-wide packet traversal,
performing 16-wide box tests and updating a given stack af
yet-to-be traversed subtrees as usual. At any point in tim%,gr
counting the bits in the active mask tells us how many of thewo
packet's rays are still active for this subtree. If this nemb 15

falls below a given threshold, we leave the packet traversal [comerence prmar) —— I o0 f A
A Py W AQ e |

code and, for this subtree, sequentially trace all actiys m “° ¢ ; 123450678 0910111213141516

PRl TE LT TL LT LPVes
80 I i

single-ray mode. 6 o T 2 ———
60

) 55 .

A. When to Switch? 50 ,

The most obvious time to check for this switch would beiz I j

right at the beginning of each traversal step. However,ghou ¢ “"™ge@ied ——] 1 oo —— 1

 —— T R R R

. . . 30 0
relatively cheap this test introduces an overhead to each ancb 1 234 56 7 & 910111213141516 0123 4 56 7 8 910111213141516
. . . . C d
every traversal step. As it turned out, it is slightly faster © @
to not test at all during downward traversal steps, buty Fig. 4. Performance in Mrays/s (including shading, samplitg) éor
check when popping nodes and their intersection distan¢@sing packet-to-single switch thresholds and differembunts of coherence
: . ee Section VI): a) primary raysafry, conferencg b) ambient-occlusion
off the Sta?k (theactive ma}Sk after a St_aCk pop Is ge”erate ee Section VI-A) c) 8-bounce diffuse path tracing, and dhptracing
by comparing the node distances against the ray intersecti@th realistic BRDFs for thecar interior (incoherent) and exterior (mixed

distances). Thigan lead to a packet with a single active ray:oherence, also see Figure 1). In all those experiments witiehsthreshold
of 7 provides close {5%) to the optimum performance across all ray

distributions and scenes.

conference fairy hairball
180

160
140
120
100
80
) S S
40

B. Hybrid Tracing Statistics 160

160

To illustrate how this hybrid scheme works in practice, ino
Table V we show, for a variety of scenes and ray distributions.,
the percentage of node tests and triangle intersections ithon ®
packet vs. single-ray mode. In terms of nomimaimber of 4t
executionf these kernels it becomes clear that the majority
of kernels is exeputed m.smgle_ray mode: For box teStS.' g. 5. Absolute performance fdN specular bounces in Mrays/sec for
to 87% and for intersection tests up to 83% of executiongnference fairy, and hairball with N = 1..8. Hybrid tracing consistently
are in single-ray mode. Many of the packet ray steps asetperforms both single and packet tracing.
performed during the initial top-down traversal where rays
still reasonably coherent. B. N-Bounce Specular
However, these numbers mask the fact that a single-ray IkerneIn addition to ambient occlusion we also measured perfor-
always executes exactly one test whereas the packet code ma ce for an artificial “N bounce specular” distribution e
do up to 16 tests per execution (the numberaofual tests fall rays are specularly reflectéd times. For this distribution,

depends on the current packet utilization). When adjusting coherence depends strongly on scene type: in scenes with
this the numbers (see Table V) shift towards packet traciqg '

. - L surface variation donferenceand fairy) rays will stay
showmg that there is indeed a significant numbe_r of node aneg;sonably coherent for several bounces, whilesiinball even
triangle tests that are coherent enough to benefit from pacE'H

e . : .
processing. In addition, Table V also shows how the hybri e first bounce d|yerggs wildly. .
. As can be seen in Figure 5, foonferenceandfairy and up

scheme adapts to varying degrees of coherence (coheren : : :

o . i to' 8 bounces packet tracing still performs rather well, whil
distributions have relatively more packet steps); andweatio . :
. . . ; for hairball even single-ray eventually performs better than
in fact switch several times during traversal, yet not asroft

. . o packet tracing. In all scenesybrid is on par with packet
as to introduce excessive switching overhead. . . .
for small reflection depths and consistently outperfornfsrit

larger depths.

VI. RESULTS
With all parameters fixed we can now evaluate our methods’ conference hairball
. . 110 T T 110
performance relative to a packet tracer. All experimentsals 1o PRk ——11 100, Racker ——

Single ---x---
H:

Single
brid - - Hi

Knights Ferry PCI card clocked at 1.2 GHz, screen resolus, |-

70

tion of 1024x 1024 pixels, a primary packet size ofx44 60\‘ oD
pixels, and a switch threshold of 7; all performance numbergf 120

include ray generation, traversal, shading, sampling, &&c % ——————— o ————==— ol
test scenes, we use tlownference fairy, hairball, and car bounces bounces bounces
models as shown in Figures 1 and 7. Fig. 6. Absolute performance foN diffuse bounces in Mrays/sec for

conference fairy, and hairball with N = 1..8. Hybrid tracing consistently
A. Ambient Occlusion outperforms both single and packet tracing.

T

P Bl

In our first experiment we have each primary ray generate
16 ambient occlusion (AO) rays, traced in 16 successi¢® N-Bounce Diffuse
pac_kets. The AO rays_dlrect|ons are generated by sampim)gt As an example for truly incoherent rays we also included
cosine-weighted hemisphere. AO rays do not use a maximum

distance; instead, rays are traced until they either hitetbimg an N-bounce diffuse path. tracer, where egch ray perfdims
diffuse bounces (no russian-roulette termination, andyeve
or leave the scene.

thing is diffuse). For this experiment Figure 6 shows tharev

Scene H Performance (Mrays/s) (L Speedup single ray tracing starts outperforming packet tracingjémst
(P)acket (S)ingle (H)ybri S/P H/P H/S two bounces.

fairy 56.9 65.6 89.1] 1.15x 1.56x 1.35x . . .

conference 792 614 1149 077x 1.45x 1.87x The hybrid approach is even faster, outperforming packet

hairball 13,5 14.6 19.2| 1.08x 1.42x 1.31x tracing by up to X (see Table VIl), and, except for being

slightly slower (less than 4%) for primary rays consistgntl

TABLE VI. Performance in Mrays/s for Ambient Occlusion shagliwith performs best for all scenes and ray depths.
16 samples (+1 primary ray) per pixel.

AO rays are not actually that incoherent: All rays start atScene Performance (Mrays/s) Speedup
a similar locations, and though they eventually do diverge, (P)acket (S)'”g"; gﬁ'fgzggcbouﬁéz S‘ HIP_ HIS
at least part of their traversal_ is c_oherent. Consequenthy,ipar 134 162 182 1.00x | 1.35x L.12X
Table VI shows that packet tracing still performs ratherlwel fairy 484 59.2 83.1| 1.22x | 1.71x 1.40x
(in particular for theconferencescene, which contains lots_conference|| 478 50.0 8d'ﬁ7z;elbol'gg:s 1.61x 1.54x
. . Imru u
of large po_Iygons), and pure s!ngle—ray tracing can at mosfzpar 70 112 1177 160x [167x T.04x
compete with packet tracinglybrid however can adapt to the fairy 30.4 516 60.8| 1.69x | 2.0x 1.17x
coherence, and consistently outperforms both schemels, wigonference|| 349 49.0 60.3] 1.40x | 1.72x 1.23x

up to 56 percent compared to packet tracing.
P P P P 9 TABLE VII. Performance in Mrays/sec for 2 and 8 diffuse bousice

View fps Speedup

Maybe most interesting, hybrid tracing performs measyrabl (Packet (S)ingle (H)ybrid SIP HP HIS
bettgr than gmgle-ray tracing even for 8 diffuse bounces; Constant Ambient lumination
proving that it can extract some amount of coherence evesxterior 050 063 0.84] 1.26x 1.68x 1.33x
from this near-random ray distribution. interior 010 016 0.18] 1.6x 1.8x 1.25X

Including HDRI lighting
exterior 0.36 0.42 0.50] 1.16x 1.39x 1.19x
D. Realistic Path Tracing interior 0.08 0.12 0.13| 1.50x 1.62x 1.08x

In addition to the_se a”'f'f?'a' ray d_|st_r|but|ons we aIS_Oe"nt TABLE VIIl. Performance in frames per second for path-tracasir(g a
grated our kernels into a highly realistic path tracer ofigga maximum path length of 13) car exterior and interior (see Fgry, with
on a non-trivial car model of 4.3 million triangles rendgreambient illumination (all directions equally important) or iovpance-sampled

with a variety of realistic BRDFs (glass, car paint, chrome,DRI Hlumination.

and Iambgrtian), with depth of field, and. with illuminationts four lanes of fourSIMD elements design to efficiently
from an importance-sampled HDRI environment map. Tgjize single-rayQuadBVH traversal on a 16-wide SIMD
properly handle the complex glass bodies we use a maximum nitecture.
path length of 13; to avoid an excessive number of diffuse second, we have introduced a hybrid traversal scheme that
bounces we use russian-roulette termination for paths &hqg,iomatically uses packet tracing for coherent rays, arglesi
accumulated path weight drops below 15%. Sampling j§y tracing for incoherent ones. Being able to use exacty th
done with padded-replication sampling [27] using a scr@ubl same data structure for both packet and single-ray tragitg n
Hammersley pattern (16 paths per pixel). o only avoids the need for maintaining two separate strusttte
This example is particularly interesting in that it is notyn 4156 allows our hybrid scheme to switch back and forth in mid
more complex and a more representative workload (e.9., {fversal, allowing to pick the best traversal mode not amly

terms of shading and sampling), but also in that it generatg$,er packet basis, but even for different subtrees traséage
an interesting mix of different ray distributions in a siegl ihe same packet.

scene: From the outside, the glass as well as the interior see
through the window are challenging, but the reflectionsivéf t o, piscussion

car paint are rather coherent, and even the diffuse shadowFn this paper. we have considered the per-lane SIMD ap-
are relatively well-behaved. On the interior, the same scen bapet, P P

generates ray distributions that are vastly more chaltendn proach only for the special case of single-ray QBVH traversa

g . : oo While we believe that the general concept carries further
addition, th?”"s to depth-of-field and high tessellationsily than that, how exactly to use it for other applications—or for
even the primary rays are not perfectly coherent.

other SIMD architectures—remains to be investigated in more
detail. However, an extension to handle packets with mae th
16 rays is straightforward. Whether such larger packets are
efficient for tracing incoherent ray paths is rather questise

as a large fraction of the L1/L2 cache will be consumed for
just holding ray data.

Our scheme is currently implemented using IfteC++
Compiler intrinsics (quite similar to [28]). This is somesath
more laborious than coding in an auto-vectorizing language
Fig. 7. A realistic path tracer operating on tbar model with a variety of like OpenCL, but otherwise works in exactly the same way as
BRDFs (glass, car paint, Blinn, Lambertian), rendered wéhtH of field and on any other SIMD CPU. The intrinsics code such generated
HDRI environment lighting. can also be wrapped in a library and be made available to
igh-level languages in a transparent fashion.

Mapping the hybrid algorithm to other hardware platforms

Table VIII shows that for these kind of ray distributionsh
the single-ray scheme clearly outperforms the packetrtgauusing high-level languages like OpenCL should be possible.

approach, from 26% for the exterior, to 60% for the interiof, packet tracing part maps well and the cross-SIMD op-

Again, the hybrid scheme provides even better performance%tions in the single ray tracing part could be emulated by

achieving speedups of 68-80% for constant ambient i"unl'fsing shared memory to exchange data between SIMD lanes. If

nation, and 39-62% for HDRI lighting. Compared to singl -
. . . e underlying hardware offers hardware support for a gener
ray tracing, the hybrid scheme achieves speedups of 8-33% érmutatign(g‘ SIMD lanes within a regis?gr, the stggng

is worth mentioning that these speedups are for “full-fram nd loading to and from shared memory could be omitted

rgn_dering times even though_this applicat_ion spends a n ympletely. However, a detailed evaluation of the efficjenc
trivial gmount of time in sampling and shading, e.g. th? HD f our approach for other hardware architectures is beyond
sampling alone costs roughly 30-40% of the render time. the scope for this paper
Performance-wise, despite accelerating incoherent rgtys b
VII. SUMMARY AND DISCUSSION up to 2x< (vs. packet tracing), such rays are still about
In this paper, we have introduced two different, but re2x slower than coherent ones. This, is quite in line with
lated, techniques: First, we have proposed a SIMD single-rather architectures [3], but might still leave room for het
tracing scheme for the IntBl MIC architecture that exploits improvements.

On the upside, the resulting scheme is fully automatic,
and does not need any user intervention at all. In terms of

mc_f dir_aos
mc_f rdir_aos
mc_f dist_aos

t 0OACS4f (ray_i ndex, di rection);
t oACSAf (ray_i ndex, rcp_di rection);
max_di st[ray_i ndex];

performance our scheme combines the best of two worlds: it is

much faster than single-ray tracing and equally fast asgtack

tracing for coherent rays, and up to< Xaster than packets

(1.2—1.3x faster than single ray tracing) for incoherent rays;

}

el se {
/1 - PACKET RAY TRACI NG

and for all tested scenes and ray distributions is fastem tha

either of those two techniques.

=== code ===

fast QBVH single ray traversal

As previously mentioned KNF shares many archnecturahle (!isLeaf (curNode)) {

properties with KNC, and we therefore believe that our ap-
proach is directly applicable to KNC and will provide the nic_f maxxvz =

same benefits.

B. Future Work

It would be interesting to also map our technique to the 8-/ = each Iane set

wide AVX instruction set that is already available on maisli

CPUs. For applications where a certain amount of coherencé ¢ “mmlir hit
is available it also looks promising to further extend our
techniques to start with packets much larger than SIMDint pos first

width: ultimately, one could even start with aggressivestiun
traversal techniques, gradually fall back to packets (jpbss
including re-packing), and eventually fall back to singhg-
tracing. Most interestingly, this approach would also wllo
some re-packing for shading.

VIIl. PseuboCoDE

Simplified pseudo C++ code for switching between packet
and single ray tracing, and for the optimized single ray

traversal kernel:
#define SIMD_UTIL_SW TCH THRESHOLD 7

mc_ f // - vector SIMD class for 16 floats
mc_i [/l - vector SIMD class for 16 ints
mc3f // - vector SIMD class for 3 x 16 floats

mc_m // - class for the 16-bit mask type
I/l - utility functions

c = sel (mask, a, b); Il - c[i] = mask[i] ? a[i] b[i]

b = per_lane_nax(a); // - per-lane max : two max ops + swizzle
b = per_lane_nmin(a); // - per-lane min : tw max ops + swi zzle
a = t oACS4f (i, b); /1l - SoA to AoS, mc3f -> mc_f

/1 - node and distance stack for the ray packet
int stack_node_p[MAX_STACK_DEPTH] ;

m c_f stack_dist_p[MAX_STACK_DEPTH] ;

/1 - node and distance stack for a single ray
int stack_node_s[MAX_STACK_DEPTH ;

float stack_dist_s[MAX_STACK_DEPTH];

/'l - ray packet data

m c3f origin, direction, rcp_direction;

m c_f max_dist; /1 - max intersection distance
mc_i trianglelD, // - intersection primtive ID
mc_mmactive; /1 - mask for active rays

/'l - dummy node to renove branch in inner-I|oop

stack_node_p[0] = -1;

stack_dist_p[0] = infinity;

stack_node_s[0] = -1;

stack_node_p[1] = gbvh_root; // - QBVH root node
stack_di st_p[1] = sel (m.active, epsilon, max_di stance);
int sindex = 2; // - stack index

while (1) {
stack_i ndex--;
int curNode = stack_node_p[sindex];

mc_f dist = stack_di st_packet[sindex];

mc_mmdist = It(dist,max_distance);

if (curNode == (int)-1) break; // - curNode == dummy node
if (mdist == 0) continue;

if (countbits(mdist) <= SIMD_UTIL_SW TCH THRESHOLD) {
/1 - SINGLE RAY TRACI NG
int ray_index = -1;
while((ray_index = bitscan(ray_index,mdist)) !=-1) {
/1 - Extract and convert data for single ray from
/1 - SoA to AoS layout and pre-load into registers
mc_f org_aos = toACS4f(ray_index, origin);

QuadNode* gptr = childPtr(qgbvh, cur Node);
mc_f mnXYZ = (free_|l oad(gptr->nmin) - org_aos) * rdir_aos;
(free_l oad(gptr->nax) - org_aos) * rdir_aos;
/1 - specul ative stack 'pop’, ’'sindex’ is stack index
cur Node = stack_node_singl e[- -si ndex] ;
/1 - mnimnm maxi mum x,y, z sl abs and di stance
mc_f mnXYZ_mn = sel (0x7777, m n(m nXYZ, maxXYZ), di st _aos);
m c_f maxXYZ_nmax = sel (0x7777, max(m nXYZ, maxXYZ) , mex_di st _aos);
to m ni nunt mexi mum of x,y,z, and di stance
per _l ane_max(m nXYZ_mni n);
per | ane_mi n(maxXYZ_nex) ;

= |1 e(0x8888, near4, far4);
mc_f neard_nmin = sel(mlr_hit,near4,infinity);
if (mlr_hit == 0) continue; // - no hit
= bitscan(mlr_hit);
int nummlr_hit = countbits(mlr_hit);

mc _f near4 =
c_f far4

si ndex++;

curNode = ((int*)b_min)[pos_first];

if (nummlr_hit == 1) continue; // - just single hit
int pos_sec = bitscan(pos_first,i_lr_hit);

if (nummlr_hit ==2) { // - tw hits

int dist_first = ((intx)&near4)[pos_first];

int dist_sec ((int*)&near4)[pos_sec];

int node_first cur Node;

/l - conpare as integer

if (dist_first <= dist_sec) {
int node_sec = ((int*)b_m n)[pos_sec];
st ack_node_si ngl e[si ndex] = node_sec;
((intx)stack_near_single)[sindex] = dist_sec;
el se {
int node_sec = ((intx)b_mn)[pos_sec];
stack_node_si ngl e[si ndex] = cur Node;
((intx)stack_near_single)[sindex] = dist_first;
cur Node = node_sec;

si ndex++; conti nue;

}

/1l - 3 or 4 hits, find closest first, push others onto stack

m c_f child_m n_dist = mn_across_4l anes(near4_mn);

mc_mmchild_mn_dist = eq(mlr_hit,child_mn_dist,near4);

int pos = bitscan(mchild_m n_dist);

mc_mmpos = andnot(mlr_hit, // - clear first bit set
andnot (m child_mn_dist,mchild_mn_dist-1));

mc_i b_mn_node = | oadl6i ((int*)qgptr->mnin);
curNode = ((int*)b_mn)[pos];
/1 push all other nodes onto stack

packst or el6i (m pos, &t ack_node_si ngl e[si ndex], b_mi n_node) ;
packst or el6f (m pos, &t ack_near _si ngl e[si ndex] , near 4);

/1 - increase stack index

sindex += countbits(i_lr_hit) - 1;

REFERENCES
“AVX Extensions,” http://software.intelom/en-us/avx,

(1]
(2]

Intel Corp.,
2011.
Intel MIC, “Intel Many Integrated Core Architecture,ttp://download.-
intel.com/pressroom/archive/reference/I3@LQ Skaugenkeynote.pdf,
2010.
[38] T. Aila and S. Laine, “Understanding the Efficiency of R@waversal

on GPUs,” inProceedings of High Performance Graphics 202909.
[4] 1. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Intetiee Rendering
with Coherent Ray TracingComputer Graphics Forupmvol. 20, no. 3,
pp. 153-164, 2001, (Proceedings of Eurographics 2001).
H. Dammertz, J. Hanika, and A. Keller, “Shallow BoundinglMme Hi-
erarchies for Fast SIMD Ray Tracing of Incoherent RaysComputer
Graphics Forum (Proc. 19th Eurographics Symposium on Remgle
2008, pp. 1225-1234.
M. Ernst and G. Greiner, “Multi Bounding Volume Hieraresi” in
Proceedings of the 2008 IEEE/EG Symposium on Interactivg Ra
Tracing, 2008, pp. 35-40.

(5]

(6]

(7]

(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

(18]

[29]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

I. Wald, C. Benthin, and S. Boulos, “Getting Rid of PackeEfficient
SIMD Single-Ray Traversal using Multi-branching BVHSs,” Rroc. of
the IEEE/EG Symposium on Interactive Ray Traci®@08, pp. 49-57.
A. Appel, “Some Techniques for Shading Machine Rendevirgf
Solids,” in AFIPS Conference Proceedingsl. 32, 1968, pp. 37-45.
T. Whitted, “An Improved lllumination Model for Shaded Disy,”
Communications of the ACMol. 23, no. 6, pp. 343-349, 1980.

R. Cook, T. Porter, and L. Carpenter, “Distributed Rayacing,”
Proceedings of SIGGRAPH '84p. 137-144, 1984.

J. T. Kajiya, “The Rendering Equation,” i@omputer Graphics (Pro-
ceedings of ACM SIGGRAPHYyol. 20, 1986, pp. 143-150.

M. Pharr and G. HumphreyBhysically Based Rendering : From Theory
to Implementation Morgan Kaufman, 2004.

V. Havran, “Heuristic Ray Shooting Algorithms,” Ph.Disdertation,
Faculty of Electrical Engineering, Czech TU in Prague, 2001

P. Shirley and R. K. MorleyRealistic Ray Tracing2nd ed. A K Peters,
2003, ISBN 1-56881-198-5.

J. Goldsmith and J. Salmon, “Automatic Creation of Objetrbirchies
for Ray Tracing,”IEEE CG and App.vol. 7, no. 5, pp. 14-20, 1987.

I. Wald, W. R. Mark, J. Gnther, S. Boulos, T. Ize, W. Hunt, S. G. Parker,

and P. Shirley, “State of the Art in Ray Tracing Animated Scghim
State of the Art Reports, Eurographics 20@D07.
C. P. Gribble and K. Ramani, “Coherent Ray Tracing viee&mn Fil-

tering,” in Proceedings of the 2008 IEEE/EG Symposium on Interactive

Ray Tracing 2008, pp. 59-66.
S. Boulos, I. Wald, and C. Benthin, “Adaptive Ray PacReirdering,”

10

Carsten Benthin Carsten Benthin is a research
scientist at Intel Labs. His research interests include
all aspects of ray tracing and high performance
rendering, throughput and high performance com-
puting, low-level code optimization, and massively
parallel hardware architectures. Carsten received his
Diploma in Computer Science and his PhD from
Saarland University in Germany.

Ingo Wald Ingo Wald is a research scientist at Intel
Labs. He holds a PhD in engineering from Saarland
University. After his PhD, he was a post-doctoral
research associate at the Max Planck Institute for
Informatics in Saarbruecken, Germany, followed by
a Research Assistant Professorship at the Scientific
Computing and Imaging Institute (SCI) and School
of Computing at the University of Utah. His work
concentrates on all aspects of real time ray trac-
ing and photo-realistic rendering, high-performance
graphics, throughput computing, and parallel/high-

in Proceedings of the 2008 IEEE/EG Symposium on Interactive Rperformance hardware architectures.

Tracing 2008, pp. 131-138.

R. Overbeck, R. Ramamoorthi, and W. R. Mark, “Large Raykeec
for Real-time Whitted Ray Tracing,” irProc. IEEE Symposium on
Interactive Ray Tracing2008, pp. 41-48.

J. Tsakok, “Faster Incoherent Rays: Multi-BVH Ray &treTracing,” in
Proceedings of High Performance Graphics 20@909, pp. 151-158.
J. Hurley, A. Kapustin, A. Reshetov, and A. Soupikova$ERay Tracing
for Modern General Purpose CPU,” Rroc. of GraphiCon 20022002.
P. H. Christensen, J. Fong, D. M. Laur, and D. Batali, yR&acing

for the Movie 'Cars’,” in Proc. IEEE Symposium on Interactive Ray

Tracing, 2006, pp. 1-6.

V. Havran, R. Herzog, and H.-P. Seidel, “On the fast ¢tamgion of
spatial hierarchies for ray tracing,” iRroceedings of the 2006 IEEE
Symposium on Interactive Ray Tracji2p06, pp. 71-80.

W. Hunt, G. Stoll, and W. Mark, “Fast kd-tree Constroctiwith an
Adaptive Error-Bounded Heuristic,” ifProceedings of the 2006 IEEE
Symposium on Interactive Ray Tracjri2P06.

S. Popov, J. @nther, H.-P. Seidel, and P. Slusallek, “Experiences with

Streaming Construction of SAH KD-Trees,” Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracir&p06.

M. Shevtsov, A. Soupikov, A. Kapustin, and N. Novoro&dy-Triangle

Intersection Algorithm for Modern CPU Architectures,” Rroceedings

of GraphiCon 20072007, pp. 33-39.

T. Kollig and A. Keller, “Efficient Bidirectional Path facing by Ran-

domized Quasi-Monte Carlo Integration,” Monte Carlo And Quasi-
Monte Carlo Methods 20Q®002, pp. 290-305.

Intel LRBnI, “C++ Larrabee Prototype Library,” httgsbftware.intel.-

com/en-us/articles/prototype-primitives-guide/, 2009.

Sven Woop Sven Woop is a research scientist at
Intel Labs. His research interests include computer
graphics, parallel programming, programming lan-
guages, and hardware design. Before joining Intel in
summer 2007, he worked on a ray tracing hardware
architecture and a shading language for a real-
time ray tracing system. Sven received his Diploma
in Computer Science and his PhD from Saarland
University in Germany.

Manfred Ernst Manfred Ernst is a research scientist
at Intel Labs, where he is leading the Augmented
Reality Lab. His primary research interests are
photo-realistic rendering, high-performance ray trac-
ing, data compression and scene-graph architectures.
Before joining Intel in 2009, Manfred co-founded
Bytes+Lights, a company that developed software
for CAD data preparation and visualization. Manfred
received his Diploma in Computer Science and his
PhD from the University of Erlangen-Nuremberg in
Germany.

William R. Mark Bill Mark is a senior researcher
at Intel. His career has crossed between academia
and industry several times, with the unifying theme
of working on future-oriented graphics techniques
and architectures. Bill led the design of the Cg
language at NVIDIA, building on earlier work with
collaborators at Stanford University. Most recently
Bill has led and collaborated on efforts to develop
high-performance visibility techniques beyond the
standard Z buffer, including the irregular Z buffer,
real-time micropolygon rendering and techniques for

efficient real-time ray tracing. This work was begun at thevidrsity of Texas
at Austin, where Bill was a faculty member, and is continuingnée|.

