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Fig. 1. Several examples rendered with our hybrid ray tracingscheme:hairball (2.8M triangles) with ambient occlusion,conference(218k triangles) with
Whitted-style reflections,fairy (174k triangles) with 8-bounce path tracing, and a 4.3M triangle car model with path tracing including different BRDFs like
Glass, Car Paint, Chrome, Plastic, and Lambertian, lit from anHDRI environment light source.

Abstract— Wide-SIMD hardware is power and area efficient,
but it is challenging to efficiently map ray tracing algorithms
to such hardware especially when the rays are incoherent. The
two most commonly used schemes are either packet tracing,
or relying on a separate traversal stack for each SIMD lane.
Both work great for coherent rays, but suffer when rays are
incoherent: The former experiences a dramatic loss of SIMD
utilization once rays diverge; the latter requires a large local
storage, and generates multiple incoherent streams of memory
accesses that present challenges for the memory system.

In this paper, we introduce a single-ray tracing scheme for
incoherent rays that uses just one traversal stack on 16-wide
SIMD hardware. It uses a bounding-volume hierarchy with a
branching factor of four as the acceleration structure, exploits
four-wide SIMD in each box and primitive intersection test, and
uses 16-wide SIMD by always performing four such node or
primitive tests in parallel. We then extend this scheme to a
hybrid tracing scheme that automatically adapts to varying ray
coherence by starting out with a 16-wide packet scheme and
switching to the new single-ray scheme as soon as rays diverge.
We show that on the IntelR© Many Integrated Core architecture
this hybrid scheme consistently, and over a wide range of scenes
and ray distributions, outperforms both packet and single-ray
tracing.

Index Terms— Ray tracing, SIMD processors

I. I NTRODUCTION

Ray tracing is a computationally intensive workload, so
it is important to implement it efficiently. On modern pro-
grammable architectures such as CPUs and GPUs the key
to reaching this goal is to efficiently use those architectures’
SIMD units. SIMD units provide high performance and power
efficiency by amortizing the hardware for caches and in-
struction decode over many arithmetic units. Many modern
hardware architectures have wide SIMD units: 8-wide AVX
on IntelR© CPUs [1], 16-wide SIMD on the IntelR© MIC
architecture [2], and 16-wide (or greater) SIMD on GPUs [3].

Using wide-SIMD hardwareefficientlycan be challenging,
since the algorithm must be organized such that all SIMD

lanes perform the same arithmetic operation together most of
the time. When tracing coherent rays, it is relatively straight-
forward to achieve high SIMD utilization. One common tech-
nique, known as packet tracing, shares one traversal stack and
performs the node/triangle intersection test for all N rays[4].
All rays are forced to follow the same traversal sequence by
always descending a subtree if any of the rays wants to traverse
the subtree, using masks to track which rays areactive. Packet
tracing is particularly efficient onexplicit SIMD architectures
(where the SIMD length is exposed in the instruction set)
because it does not require scatter/gather operations, and
because the mix of scalar and vector operation utilizes both
scalar and vector units. However, performance degrades badly
once ray divergence becomes significant, eventually reaching
a state where only very few of theN SIMD lanes are still
active.

An alternative is to use the SIMD unit to traceN inde-
pendent rays. That is, each SIMD lane has its own ray and
its own traversal stack. This technique is particularly popular
on today’s GPUs, which have an implicit SIMD architecture
that is well matched to it [3]. In asingle program multiple
data(SPMD) programming model such as CUDA or OpenCL,
this even gives the appearance of each SIMD lane running
its own scalar program. However, SIMD efficiency loss still
occurs if different SIMD lanes execute different code paths.
For example, if some rays want to descend further into the
acceleration structure but others want to perform a ray/triangle
intersection test, some of the SIMD lanes will be idle [3].

There are two more subtle performance challenges associ-
ated with theN-independent-raysalgorithm. First, it needs a
large working set forN independent stacks and temporary vari-
ables. This requires lots of (vector) registers and lots of local
storage, which in turn lead to costly spilling to device memory,
and/or to a reduction in the number of threads available for
latency hiding. Second, every memory access translates to a
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Fig. 3. We view a 16-wide SIMD register as4 lanes of 4 elements, using
four-wide SIMD (x,y,z,w) for four node respectively primitive intersection
tests in parallel; shared data like ray and traversal stack have to be stored
only once.

scatter/gather operation. When rays are coherent, the addresses
generated by all lanes will be adjacent, but when not, they
will be very different. HandlingN totally divergent memory
accesses in each iteration however is a challenge for any
memory system, e.g. the number of concurrently open DRAM
pages (and times to open/close such pages), number of TLB
entries, etc. These factors explain why the performance of
the N-independent-raysalgorithm degrades significantly on
modern GPUs as rays diverge [3].

These considerations lead to the question whether it is
possible to use (wide-)SIMD hardware to efficiently trace a
single ray at a time. One approach is to use a bounding volume
hierarchy (BVH) with a branching factor and leaf size equal
to the SIMD width (anMBVH acceleration structure) [5],
[6], [7]. This approach uses N-wide SIMD to perform N
node or triangle intersection tests in parallel for a singleray
and does not rely on ray coherence at all. However, this
approach quickly loses algorithmic efficiency for branching
factors greater than four and with branching factors of 16 or
greater is significantly worse than packet tracing if there is
even a small amount of ray coherence [7].

A promising approach would be to use a branching factor
of four, but use additional parallelism within each child-node
test to better utilize a wider SIMD unit. We present such an
approach in this paper. The key idea is to view the 16-wide
SIMD hardware not as 16 independent lanes, but rather as
four lanes of four elements each, and use this to processfour
nodes respectively four primitives in parallel, using 4-wide
SIMD for each node/primitive intersection test (see Figure3).
This allows for effectively using wide SIMD for a single ray
without having to rely on an inferior data structure, and with
less strain on the memory system than theN-independent-rays
would produce. We show that on the IntelR© Knights Ferry PCI
card [2] that we use for evaluation, this technique outperforms
packet tracing for incoherent rays.

This per-lane approach also has some overhead, and for
coherent computations is not as efficient as processing 16
different rays. Thus, we also extend our technique to a hybrid
scheme in which we generate and shade rays in packets,
trace them as packets as long as they are coherent, and then,
on-the-fly, switch to the single-ray scheme when the rays
diverge. On our platform this hybrid scheme is superior to
both packet and single ray tracing, and achieves consistently
higher performance than either of those techniques.

II. PREVIOUS WORK

Ray Tracing goes back to the seminal work by Appel
et al. [8] and Whitted et al. [9], and is often used in the
context of advanced rendering algorithms as pioneered by
Cook [10], Kajiya [11], etc. For an introduction to ray tracing
see for instance [12]. Making ray tracing fast requires the
use of a goodacceleration data structuresuch as grids, kd-
trees, or bounding volume hierarchies (BVHs) (e.g., [13],
[14]). Building good acceleration structures is usually done
by applying thesurface area heuristic (SAH)as originally
introduced by Goldsmith and Salmon [15], and later refined
by lots of others (see, e.g., [13], [16]).

With both CPUs and GPUs using ever wider SIMD designs,
researchers had to increasingly focus onSIMD ray tracing. For
this purpose, Wald et al. [4] proposed the concept ofpacket
tracing, which works by traversingN different rays in parallel
through the acceleration data structure by conservativelyde-
scending into subtrees and de-activating those rays that would
usually not have traversed a subtree. This method maps well
to current CPU designs, but for incoherent rays suffers from
low SIMD utilization when too many rays get inactive.

To improve SIMD utilization different researchers have
looked into using packets much larger than the SIMD width,
and compacting the still-active rays at different points in
time [17], [18], [19]. A hybrid approach that uses compaction
of large ray sets and uses a similar idea of a fall back to single
ray tracing in case no coherence is detected was presented
by Tsakok et al. [20]. However, compaction usually comes at
a not inconsiderable cost (in particular on architectures with
relatively small caches), and for really incoherent rays and
complex scenes produces only modest benefits.

SIMD single-ray tracing (SSRT)was first applied by Hurley
et al. [21] to intersect multiple primitives in SIMD in an oth-
erwise scalar kd-tree traverser, and by Christensen et al. [22].
Applying this same concept to BVHs—where it can be applied
to node traversal steps—has been independently proposed by
Dammertz et al. [5], Ernst et al. [6] and Wald et al. [7].

The IntelR© Many Integrated Core (IntelR© MIC) Architec-
ture is a many-core x86 architecture for high performance and
throughput computing. It is designed for highly parallel appli-
cations which have the highest demands for compute power
and memory bandwidth, and theKnights Ferry (KNF) Soft-
ware Development Platform is its first incarnation [2]. The first
generally available IntelR© MIC product calledKnights Corner
(KNC) has already been announced [2]. Besides significant
performance improvements, KNC shares many architectural
properties with the KNF, and the algorithmic improvements
proposed here will carry over to it.

KNF’s many-core processor (calledAubrey Isle) consists
of 32 x86 cores, each having fully coherent L1/L2 caches
(32K/256K), and each running 4 threads for latency hiding.
Each x86 core issuperscalar, having both a scalar and a 16-
wide SIMD unit that can both issue in the same cycle (a
process calledpairing). This is favorable for our approach
in that shared data can be kept in scalar registers, and their
associated scalar operations can often be issued in parallel to
other vector instructions.
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Of particular interest to this paper, the 16-wide SIMD unit
is organized into fourlanes of four elementseach, and is
programmed using a three operand 16-wide SIMD instruction
set that also supportsmasking (for predication); the third
operand can be either a register, or a memory address. In case
it is a register, the instruction set allows certainfree swizzles to
be applied to the four elements of each lane (e.g.,xyzw→ yyyy,
or xyzw→ yxwz); if it is a memory address, it allows for a
free load from this address (including a 1-to-16 or 4-to-16
broadcast, if desired). Those modifiers are called free because
they are an integral part of the given vector instruction, and
do not require any additional issue cycles.

III. A LGORITHM OVERVIEW

Intel R© MIC’s 16-wide SIMD can also be viewed as being
organized into fourlanesof four elementseach. The core idea
of our approach is to exploit this organization to realize an
efficient way of traversing single rays through a BVH with a
branching factor offour (rather than 16, like the SIMD width).
This aims at two separate goals:

First, reducing the branching factor from 16 to 4 signif-
icantly increases the efficiency of SSRT itself: a sixteen-
wide BVH is significantly less effective at culling than a
two- or four-wide BVH [7]; even with the best-known build
algorithms the average node and leaf utilization is rather low,
and having to perform 16-wide reductions after every node
test and triangle intersection carries a significant performance
overhead (measured to be up to 50% vs. a four-wide BVH).

Second, operating on a four-wide BVH (also calledQuad-
BVH or QBVH) allows for performing efficient packet traver-
sal on exactly the same data structure used for single-ray
traversal (packet traversal is roughly equally efficient for both
binary and QBVHs, but significantly less efficient for a 16-
wide BVH). This then allows for a hybrid traversal scheme
(see Section V) in which we use packet tracing as long as
rays are coherent, and switch to single-ray traversal as soon
as rays are detected to diverge.

IV. SINGLE-RAY TRAVERSAL

For our QBVH-based single-ray traversal approach we view
the 16-wide registers as four 4-wide registers, and process
four nodes respectively four triangles in parallel using per-
lane operations. For example, given a vectorA and 4 vectors
Bi in float4 format, we can compute the four dot products
< A,Bi > via

vA = load (&A, BROADCAST 4X16 ) ;
do t = mul (vA , f r e e l o a d (&B, LOAD16 ) ) ;
do t = add ( dot , f r e es w i z z l e{yxwz} ( do t ) ) ;
do t = add ( dot , f r e es w i z z l e{zwxy} ( do t ) ) ;

Since both loads and swizzles are “free” in this code,
assuming thatvA had been in registers already (as a ray
would usually be) we would be able to compute these four
dot products with only three instructions. This is an up to 4×

lower throughput than computing 16 separate dot products
in the “packet” (structure-of-arrays layout) approach (which
could be done with the same number of instructions)—but is
an up to 4× win if most of these 16 elements were inactive.

These free loads and swizzles do come with some restric-
tions, though: swizzles are free only for intra-lane swizzles,
and free loads require data to be aligned to 64 bytes for vector
loads, and to 16 bytes for 4-to-16 load-broadcasts, respectively.

A. Data Organization

The key lesson to be learnt from this example is how crucial
proper data organization and alignment are to our approach:to
reach the 3 instructions we have assumed thatA was already
in a register, and that all fourBi vectors can be loaded together
with a single free load; if this was not the case the cycle count
would be significantly higher: For example, if the fourBi came
from different memory regions we would require four explicit
loads that together would more than double the instruction
count.

1) Ray Data: Though we eventually operate on individual
rays, rays are generated and shaded in packets, using a
structure-of-arrays (SoA) format. For the single-ray box test
and triangle test kernels, however, we require a layout in which
the respective ray’s origin (org), direction (dir), and pre-
computed 1/direction (rcp) are pre-loaded into one register
each (xyzcoordinates replicated into all four lanes).

Upon entering traversal we first create an array-of-structures
(AoS) copy of the given packet’sorg, dir, andrcp values,
from which we can then load-and-broadcast each ray’s data
whenever so required. All of the ray’s hit data can stay in
the original packet format, and modified there whenever an
intersection occurs.

2) (Quad-) BVH Nodes:During traversal, we frequently
have to perform four ray-box intersection tests with a node’s
four children (stored as AABB). We perform one node test
in each lane, using each lane’s elements to process the x,y,
and z coordinates in parallel (see Section IV-C.1). Given such
a ’lane-based’ kernel, a good data layout for a quad-node is
to store all four nodes in one compact memory region, with
the first cache line dedicated to the four min coordinates, the
second to the max coordinates.

s t r u c t QuadNode {
s t r u c t { f l o a t 3 min3 ; u i n t 3 2 d a t a ; } min [ 4 ] ;
s t r u c t { f l o a t 3 max3 ; u i n t 3 2 unused ;} max [ 4 ] ;

} ;

In this layout the four min (and max) coordinates are aligned
to 64-byte boundaries, and can be loaded into the lanes of a
vector through a single free load. The otherwise unused fourth
element in each of the nodes’ min lanes stores additional
information: Depending on whether the given child node is
an internal or a leaf node, which is indicated by the most
significant bit indata, an offset to either the child or to the first
triangle of the respective leaf is stored in the remaining bits.
Additionally, the two least significant bits hold the numberof
triangles in case of a leaf node.

Since this layout forces all inner nodes to haveexactlyfour
children those nodes with less children have to be padded
with empty nodes. Padding introduces a memory overhead of
roughly 25% for node memory (see Table I); however, since
a QBVH has significantly fewer nodes than a binary BVH we
still spend less on node storage than a corresponding binary
BVH would have.
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3) Triangle Data: The triangle intersection kernel also
operates on four different triangles—one per lane—in parallel.
To avoid having to gather the four triangles’ vertices from
different memory locations we use a separate array that stores
for each triangle all required data in a single cache line-sized
data block. This is similar to Wald et al [4] and Aila et al [3].

s t r u c t T r i a n g l e {
s t r u c t { f l o a t 3 pos ; u i n t 3 2 quantN ;} v tx [ 3 ] ;
f l o a t 3 gNormal ; u i n t 3 2 shader ID ;

} ;

This triangle record holds the triangle’s three vertices (one
per lane), leaving the lanes’ fourth components of each vertex
to store additional data such as vertex index or discretized
vertex normal. In the rest of the cache line-sized data block
we additionally store the geometry normal and shader ID. Each
vertex within the data block is aligned to a 16-byte boundary
and can be loaded into a register lane by a single instruction.

Triangles are stored in the same order as they appear in the
QBVH’s leaves, thus each leaf can address all of its triangles
with a single pointer and count value.

Since we store triangles individually we do not have to
perform any padding to multiples of four (saving memory).
The triangle intersector will always process triangles in groups
of four; instead, for partially filled leaves we simply include
triangles from a neighboring leaf.

B. QBVH Construction and Quality

Building BVHs with branching factors of more than two
has been addressed previously [5], [6], [7], and in fact, any
such construction method can be used for our approach. In
our implementation, we use a top-down construction: As long
as a quad-node has less than four children we take the child
with the biggest surface area (thus greedily minimizing the
SAH early up in the tree), try splitting it into two, and iterate.
Once a quad-node is fully built, we descend into each of its
non-leaf children, and build those recursively.

For the splitting process we use a standard SAH binning
process [23], [24], [25], with the only exception that we create
a leaf as soon as the number of triangles drops to or below 4.
In fact, we decided to actuallyenforcea leaf size of four or less
by chopping larger leaves into chunks of four (using simply the
input order). This case is extremely rare and does not introduce
any measurable degradation in QBVH quality. On the other
hand, knowing thatall leaves have four or less triangles, the
single-ray traversal kernel can immediately perform a single
four-triangle intersection when reaching a leaf, without any
additional looping or branching code at all.
The average node and leaf utilization we get from this build
is rather high, at≥75% for inner quad-nodes, and over 90%
for leaves (see Table I). These numbers compare well to those
reported by [7] for a 16-wide BVH (around 65% and 70-75%,
respectively) despite their more sophisticated build process.

The expected SAH cost for our QBVH also compares well
to a traditional binary BVH: Since we do not perform any
additional merge/collapse steps that trade quad-node utilization
for BVH quality the only difference to a traditional SAH
builder is that we use a leaf threshold of four rather than

Scene tris quad-nodes w/ #children avg util. of
2 3 4 quad-node leaf

fairy 174k 8k 4k 11k 78% 90%
conference 282k 13k 6k 16k 78% 92%
hairball 122k 6k 3k 7k 77% 90%
car 4355k 200k 95k 270k 78% 90%

TABLE I. Average quad-node/leaf utilization for our constructed QBVHs and
distribution of partly filled quad-nodes/leaves. Average quad-node utilization
is 78% and leaf utilization over 90%.

always splitting until the SAH itself indicates a leaf. Even
when applied to a binary BVH this modification degrades SAH
cost by only about 5%; while at the same time reducing the
number of nodes by roughly half (see Table II). Our QBVH
(QVHLT4) has exactly the same number of leaves as the binary
BVH with leaf threshold of 4 (BVHLT4), but in addition has 33-
40% fewer internal nodes, resulting in an even lower SAH cost
and node count (see Table II). These statistics indicate that our
data structure does not have any significant overhead compared
to a traditional binary BVH; on the contrary, it should be at
least competitive evenwithout applying our SIMD single-ray
tracing scheme.

Scene BVHLT1 BVHLT4 QBVHLT4
nodes SAH nodes SAH nodes SAH

fairy 213k 33.2 108k 33.3 70.9k 23.5
conference 309k 49.4 178k 51.0 114k 35.4
hairball 2.4m 505.0 1.8m 493.0 1.2m 386.5
car 5.3m 132.0 2.8m 132.5 1.7m 96.6

TABLE II. Relative SAH cost and node count for a traditionalbinary BVH
without (BVHLT1) and with an explicit leaf/triangle threshold of 4 (BVHLT4)
and for our QBVH with a similar threshold (QBVHLT4).

C. Traversal and Intersection

In the following we will sketch the three major components
of the traversal and intersection: lane-based SIMD node in-
tersection test, lane-based SIMD triangle intersection test, and
control flow. The pseudo code for the complete traversal kernel
is given in Section VIII.

1) Node Intersection Kernel:The node intersection kernel
performs all four box’s slabs tests in parallel. For a given
box [bmin,bmax], the slabs test first computes, for each di-
mensiond, the ray’s distance to that box’ lower and upper
bounding planestlo,d = (bmin,d −orgd)∗ rcpd; tup,d = . . ., then
uses these to get the entry and exit distances of this slab
tin,d = min(tlo,d, thi,d); tout,d = max(tlo,d, thi,d), and finally com-
putes the ray’s final entry and exit distance as the maximum
respectively minimum of all entry respectively exit distances
tin = mindtin,d, tout = mindt,d.

For our SIMD box test, we process all four boxes in
parallel (one per lane), with each lane processing its box’ three
dimensions:

t l o d = mul ( sub ( org4 , f r e el o a d ( nodemin ) ) , r cp4 ) ;
t h i d = mul ( sub ( org4 , f r e el o a d ( nodemax ) ) , rcp4 ) ;
t i n d = min ( t l o d , t h i d ) ;
t o u t d = max ( t l o d , t h i d ) ;

Then, computing the finaltin, tout requires only horizontal
min/max-reductions inside the four lanes (using free swizzles);
and comparing each lane’s first element fortin ≤ tout gives us
the bit mask indicating which of the four boxes had a valid
intersection:
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t i n = max ( t i n d , t i n d {yxwz } ) ;
t i n = max ( t i n d , t i n {zwxy } ) ;
t o u t = . . .
h i t m a s k = cmple (0 x8888 , ti n , t o u t ) ;
/ / − h i t m a s k = 0 x8888 & t i n [ i ] ’ <=’ t o u t [ i ]

Note in particular that through our node layout and pre-
loading and replicating of the ray, this can all be done with
free loads and free swizzles, with no scalar code at all.

2) Triangle Intersection Kernel:As triangle intersection
kernel we use a modified variant of the intersection test by
Shevtsov et al. [26]. As the QBVH leaves have at most four
triangles, we use a kernel that always processes four triangles
without any scalar loop code at all (for leaves with less
triangles we simply include the next leaf’s triangles). Each lane
then computes a different triangle’s intersection test, using the
lane’s four elements to process three dimensions in parallel,
and using free swizzles for any reduce operations (e.g., in
dot products). If at least one lane had a successful triangle
intersection, we can use horizontal operations across lanes to
determine which of the lanes had the closest intersection; the
corresponding lane’s values are then written back to the ray’s
intersection data.

Unlike the box test, our triangle intersection kernel first
has to “gather” the four triangles’ data (using masked load-
and-broadcast’s) from the four triangle records sequentially
stored in memory (see Section IV-A.3). This costs 16 extra
instructions (loading 16× 16 bytes) which is between 20-30
% of the total kernel instruction count.

3) Control Flow: On a high level, traversal works by
maintaining a stack of yet-to-be-traversed nodes; for eachnode
we store two 32-bit values: the 32-bitdata field describing
the respective node, and the distance to that subtree. Like for a
binary BVH we do not maintain a fully sorted stack but instead
greedily descend into the child with the closest hit distance,
and pushing all others onto the stack. Note that we donot sort
the pushed nodes by hit distance as in 90% of all traversal steps
only 2 or less nodes are hit (see Table III). In this common
case picking the closest child is the same as sorting and for
those 10% of the cases where more than 2 nodes were hit we
may push (some) nodes in reverse order. Compared to fully
sorting the distances in the 2 or more nodes case, the maximum
introduced overhead of 3% additional traversal steps (for the
ray distributions in Table III) is negligible.

Stack Compaction:Every time an intersection is found
all stack-entries with a distance greater than this hit distance
are no longer valid. Rather than discarding such nodes when
popping them off the stack we explicitly perform astack
compactionevery time a leaf yielded a valid intersection:
Using IntelR© MIC’s compaction instructions this is rather
cheap.

Efficient Implementation:In a packet tracer, control flow
can be amortized over all rays, and its cost is low compared
to box and triangle intersection kernels. For single-ray tracing
where the four box intersection tests require only a dozen
vector instructions, minimizing scalar control flow cost is
crucial. Several examples of cutting down on control flow cost
have already been mentioned: Using a fixed leaf size of four to
remove all leaf loop-code; not sorting pushed nodes; and using

stack compaction. In addition, IntelR© MIC’s aforementioned
pairing feature offers a potent way of hiding scalar control
flow operations. For example, since popping from stack uses
only simple scalar operations we can hide any and all popping
cost by performing aspeculativepop operation in parallel
to the node intersection test; in which case all scalar pop
instructions get paired with the node test’s vector instructions
(a specially markedsentinel leaf-node is used to mark the
bottom of the stack). If the hit-mask is zero we can directly
continue the top-down traversal with the already popped node.

If the hit-mask is non-zero, we first count the number of
bits set in this mask. Looking at the probability distribution of
how often a node has 0,1,2,3, or 4 intersections (see Table III)
we can then optimize for the most common case of 2 or less
nodes by using a separate code path that determines the closest
child with at most one (scalar) comparison rather than a full
cross-lane reduce. A costly cross-lane vector reduction tofind
the closest child is then only needed in the unlikely “3 or
more” path. Obviously we also design the code to pair the
common code path wherever possible.

# hit nodes shading 0 1 2 3 4
conference 2-bounce diffuse 22.5 42.4 25.2 7.9 2.0
conference 8-bounce diffuse 22.1 43.0 25.3 7.8 1.7
hairball ambient occlusion (AO) 17.5 46.0 25.5 7.3 3.7

TABLE III. Distribution (in %) of number of child nodes hit during single-ray
traversal for different ray distributions and scenes. Roughly 90% of traversals
hit two or less nodes.

D. Performance

The ultimate goal of our single-ray tracing scheme is to
be used only for handling incoherent rays in a hybrid tracing
scheme. Before looking into such a scheme it is helpful to
first analyze the performance of the single-ray kernel itself. In
Table IV we compare our single-ray kernel’s performance to
a QBVH-based packet tracer (16 rays per packet). For all ray
distributions tested, the maximum difference in performance
between using a binary BVH and a QBVH for packet tracing
has been measured to be less than 3-4% and is therefore
negligible. In each traversal step the QBVH-based packet
tracer tests 16 rays against each of the four nodes. For the
triangle intersection, 16 rays are tested against one triangle.

For the sake of simplicity, in this preliminary evaluation
we intentionally compare only the two most extreme cases
of ray distributions: highly coherent primary rays, and highly
incoherent rays from an 8-bounce diffuse path tracer (see
Section VI-D). To minimize the masking effect of high shading
cost both cases use the minimum amount of shading.

coherent (primary) incoherent (8-bounce-diffuse)
P/S S/P P/S S/P

hairball 2.43x 0.41 0.60x 1.65
fairy 3.44x 0.29 0.58x 1.71
conference 3.84x 0.26 0.71x 1.40

TABLE IV. Performance ratios between single-ray (S) and packet tracing (P),
for coherent (primary) rays and incoherent (8-bounce diffuse) rays. Single-
ray tracing outperforms packet tracing for incoherent rays,but is significantly
slower for coherent rays.

Not unexpectedly, Table IV confirms that our single-ray
tracing scheme is significantly faster than a packet tracer for
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incoherent rays, but significantly slower for coherent rays. For
coherent rays, the packet tracer is hard to beat: it utilizes
almost every SIMD element in every vector instruction, it can
amortize addressing overhead, control flow, etc. and overall
makes very good use of the hardware. For coherent rays, the
single-ray scheme is significantly slower (2.4−3.8×): even in
the best of cases we use only 12 of 16 vector elements (4 lanes
times 3 dimensions), and despite all our efforts to reduce and
hide control flow cost wherever possible a significant cost still
remains (at 11 instructions for four box tests even a handful
of cycles for control are significant!). For incoherent rays,
however, the single-ray scheme performs just as well as for
coherent rays, and eventually outperforms packet tracing by
1.4−1.7×.

V. HYBRID PACKET/SINGLE-RAY TRACING

As just shown the single-ray scheme itself is faster than
a packet tracer for incoherent rays, but slower for coherent
ones. However, for practically relevant applications raysare
neither fully coherent nor fully incoherent. Our solution to
this is to use a hybrid scheme in which packets are used
for coherent rays, and single rays for incoherent ones. At its
simplest, this can be achieved bymanuallycalling packet code
for rays that areknownto be coherent (such as primary rays,
and primary shadow rays to a point light), and single-ray code
for everything else.

However, while some rays are typically coherent (or not),
others are more difficult to classify: For example, many but
not all of the reflection rays in the car model (see Figure 1) are
coherent; the degree of coherence for shadow rays to an area
light source depends on the size of this light source; and even
shadow rays to an HDRI environment map depend on how
diffuse vs. directed that illumination is. Consequently, amore
automatic way of combining these techniques is desirable.
Fortunately, since our data structure can be used forboth
packet and single-ray tracing we do not actually have to
guessa packet’s coherence at all, and can, in fact, switch
between packet tracing and single-ray tracing at any time in
mid traversal.

We start out with a traditional, 16-wide packet traversal,
performing 16-wide box tests and updating a given stack of
yet-to-be traversed subtrees as usual. At any point in time,
counting the bits in the active mask tells us how many of the
packet’s rays are still active for this subtree. If this number
falls below a given threshold, we leave the packet traversal
code and, for this subtree, sequentially trace all active rays in
single-ray mode.

A. When to Switch?

The most obvious time to check for this switch would be
right at the beginning of each traversal step. However, though
relatively cheap this test introduces an overhead to each and
every traversal step. As it turned out, it is slightly faster
to not test at all during downward traversal steps, butonly
check when popping nodes and their intersection distances
off the stack (theactive mask after a stack pop is generated
by comparing the node distances against the ray intersection
distances). Thiscan lead to a packet with a single active ray

scene render traversal intersection num
mode packet single packet single switches

fairy primary 85% 15% 80% 20% 0.7
fairy AO 31% 69% 26% 74% 8.4
conference 8-bounce 28% 72% 19% 81% 12.4
hairball AO 13% 87% 17% 83% 18.6
fairy primary 98% 2% 92% 8%
fairy AO 71% 29% 48% 52%
conference 8-bounce 56% 44% 61% 39%
hairball AO 60% 40% 33% 66%

TABLE V. Top: relative number of box and triangle intersection tests done
in packet vs. single-ray mode for our hybrid tracing, and average number of
switches performed during traversal (switch threshold set to 7). For incoherent
ray distributions, the majority of all intersection tests are done in single-
ray mode. Bottom: relative distribution of totalper ray box and triangle
intersection tests (taking packet utilization into account). Even for incoherent
ray distributions a large fraction of ray box and triangle intersection tests are
still done in packet mode.

going down all the way to a leaf node, but nevertheless we
have chosen this approach as it is slightly better in practice.
The actual switch overhead in terms of instructions is rather
low as approximately only a dozen instructions are requiredto
reload either packet or single ray data from cache into registers
(intersection data is always kept in cache memory).

The switch to single-ray tracing always applies only to the
current subtree; any other subtree popped off the stack at a
later time will again decide whether it is to be processed in
packet or single-ray form. Thus, we might actually switch
back-and-forth between packet and single-ray mode several
times during traversal, and subtrees for which the packet is
still coherent enough will still be processed in packet form
(see Table V).

While the method itself is fully automatic, we still have
to determine the parameter at which we switch from packet
mode to single-ray traversal mode. To do this, we have taken
a variety of scenes and ray distributions, and measured the
hybrid algorithm’s performance for each of the 16 possible
values. Based on the these experiments (Figure 4 shows
the results for two example scenes, while all other scenes
show similar behavior), we adopt a threshold of 7, which is
consistently within 5% of the optimum performance across all
ray distributions and scenes.
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Fig. 4. Performance in Mrays/s (including shading, sampling etc) for
varying packet-to-single switch thresholds and differentamounts of coherence
(see Section VI): a) primary rays (fairy, conference); b) ambient-occlusion
(see Section VI-A) c) 8-bounce diffuse path tracing, and d) path tracing
with realistic BRDFs for thecar interior (incoherent) and exterior (mixed
coherence, also see Figure 1). In all those experiments, the switch threshold
of 7 provides close (≤5%) to the optimum performance across all ray
distributions and scenes.
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B. Hybrid Tracing Statistics

To illustrate how this hybrid scheme works in practice, in
Table V we show, for a variety of scenes and ray distributions,
the percentage of node tests and triangle intersections done in
packet vs. single-ray mode. In terms of nominalnumber of
executionsof these kernels it becomes clear that the majority
of kernels is executed in single-ray mode: For box tests, up
to 87% and for intersection tests up to 83% of executions
are in single-ray mode. Many of the packet ray steps are
performed during the initial top-down traversal where raysare
still reasonably coherent.
However, these numbers mask the fact that a single-ray kernel
always executes exactly one test whereas the packet code may
do up to 16 tests per execution (the number ofactual tests
depends on the current packet utilization). When adjusting for
this the numbers (see Table V) shift towards packet tracing,
showing that there is indeed a significant number of node and
triangle tests that are coherent enough to benefit from packet
processing. In addition, Table V also shows how the hybrid
scheme adapts to varying degrees of coherence (coherent
distributions have relatively more packet steps); and thatwe do
in fact switch several times during traversal, yet not as often
as to introduce excessive switching overhead.

VI. RESULTS

With all parameters fixed we can now evaluate our methods’
performance relative to a packet tracer. All experiments use a
Knights Ferry PCI card clocked at 1.2 GHz, screen resolu-
tion of 1024× 1024 pixels, a primary packet size of 4× 4
pixels, and a switch threshold of 7; all performance numbers
include ray generation, traversal, shading, sampling, etc. As
test scenes, we use theconference, fairy, hairball, and car
models as shown in Figures 1 and 7.

A. Ambient Occlusion

In our first experiment we have each primary ray generate
16 ambient occlusion (AO) rays, traced in 16 successive
packets. The AO rays’ directions are generated by sampling the
cosine-weighted hemisphere. AO rays do not use a maximum
distance; instead, rays are traced until they either hit something
or leave the scene.

Scene Performance (Mrays/s) Speedup
(P)acket (S)ingle (H)ybrid S/P H/P H/S

fairy 56.9 65.6 89.1 1.15x 1.56x 1.35x
conference 79.2 61.4 114.9 0.77x 1.45x 1.87x
hairball 13.5 14.6 19.2 1.08x 1.42x 1.31x

TABLE VI. Performance in Mrays/s for Ambient Occlusion shading with
16 samples (+1 primary ray) per pixel.

AO rays are not actually that incoherent: All rays start at
a similar locations, and though they eventually do diverge,
at least part of their traversal is coherent. Consequently,
Table VI shows that packet tracing still performs rather well
(in particular for theconferencescene, which contains lots
of large polygons), and pure single-ray tracing can at most
compete with packet tracing.Hybrid however can adapt to the
coherence, and consistently outperforms both schemes, with
up to 56 percent compared to packet tracing.
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Fig. 5. Absolute performance forN specular bounces in Mrays/sec for
conference, fairy, and hairball with N = 1..8. Hybrid tracing consistently
outperforms both single and packet tracing.

B. N-Bounce Specular

In addition to ambient occlusion we also measured perfor-
mance for an artificial “N bounce specular” distribution where
all rays are specularly reflectedN times. For this distribution,
coherence depends strongly on scene type: in scenes with
low surface variation (conferenceand fairy) rays will stay
reasonably coherent for several bounces, while inhairball even
the first bounce diverges wildly.

As can be seen in Figure 5, forconferenceandfairy and up
to 8 bounces packet tracing still performs rather well, while
for hairball even single-ray eventually performs better than
packet tracing. In all scenes,hybrid is on par with packet
for small reflection depths and consistently outperforms itfor
larger depths.
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Fig. 6. Absolute performance forN diffuse bounces in Mrays/sec for
conference, fairy, and hairball with N = 1..8. Hybrid tracing consistently
outperforms both single and packet tracing.

C. N-Bounce Diffuse

As an example for truly incoherent rays we also included
an N-bounce diffuse path tracer, where each ray performsN
diffuse bounces (no russian-roulette termination, and every-
thing is diffuse). For this experiment Figure 6 shows that even
single ray tracing starts outperforming packet tracing forjust
two bounces.

The hybrid approach is even faster, outperforming packet
tracing by up to 2× (see Table VII), and, except for being
slightly slower (less than 4%) for primary rays consistently
performs best for all scenes and ray depths.

Scene Performance (Mrays/s) Speedup
(P)acket (S)ingle (H)ybrid S/P H/P H/S

2 diffuse bounces
hairball 13.4 16.2 18.2 1.20x 1.35x 1.12x
fairy 48.4 59.2 83.1 1.22x 1.71x 1.40x
conference 47.8 50.0 77.1 1.04x 1.61x 1.54x

8 diffuse bounces
hairball 7.0 11.2 11.7 1.60x 1.67x 1.04x
fairy 30.4 51.6 60.8 1.69x 2.0x 1.17x
conference 34.9 49.0 60.3 1.40x 1.72x 1.23x

TABLE VII. Performance in Mrays/sec for 2 and 8 diffuse bounces.
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Maybe most interesting, hybrid tracing performs measurably
better than single-ray tracing even for 8 diffuse bounces,
proving that it can extract some amount of coherence even
from this near-random ray distribution.

D. Realistic Path Tracing

In addition to these artificial ray distributions we also inte-
grated our kernels into a highly realistic path tracer operating
on a non-trivial car model of 4.3 million triangles, rendered
with a variety of realistic BRDFs (glass, car paint, chrome,
and lambertian), with depth of field, and with illumination
from an importance-sampled HDRI environment map. To
properly handle the complex glass bodies we use a maximum
path length of 13; to avoid an excessive number of diffuse
bounces we use russian-roulette termination for paths whose
accumulated path weight drops below 15%. Sampling is
done with padded-replication sampling [27] using a scrambled
Hammersley pattern (16 paths per pixel).

This example is particularly interesting in that it is not only
more complex and a more representative workload (e.g., in
terms of shading and sampling), but also in that it generates
an interesting mix of different ray distributions in a single
scene: From the outside, the glass as well as the interior seen
through the window are challenging, but the reflections off the
car paint are rather coherent, and even the diffuse shadows
are relatively well-behaved. On the interior, the same scene
generates ray distributions that are vastly more challenging. In
addition, thanks to depth-of-field and high tessellation density
even the primary rays are not perfectly coherent.

Fig. 7. A realistic path tracer operating on thecar model with a variety of
BRDFs (glass, car paint, Blinn, Lambertian), rendered with depth of field and
HDRI environment lighting.

Table VIII shows that for these kind of ray distributions
the single-ray scheme clearly outperforms the packet tracing
approach, from 26% for the exterior, to 60% for the interior.
Again, the hybrid scheme provides even better performance,
achieving speedups of 68-80% for constant ambient illumi-
nation, and 39-62% for HDRI lighting. Compared to single
ray tracing, the hybrid scheme achieves speedups of 8-33%. It
is worth mentioning that these speedups are for “full-frame”
rendering times even though this application spends a non-
trivial amount of time in sampling and shading, e.g. the HDRI
sampling alone costs roughly 30-40% of the render time.

VII. SUMMARY AND DISCUSSION

In this paper, we have introduced two different, but re-
lated, techniques: First, we have proposed a SIMD single-ray
tracing scheme for the IntelR© MIC architecture that exploits

View fps Speedup
(P)acket (S)ingle (H)ybrid S/P H/P H/S

Constant Ambient Illumination
exterior 0.50 0.63 0.84 1.26x 1.68x 1.33x
interior 0.10 0.16 0.18 1.6x 1.8x 1.25x

Including HDRI lighting
exterior 0.36 0.42 0.50 1.16x 1.39x 1.19x
interior 0.08 0.12 0.13 1.50x 1.62x 1.08x

TABLE VIII. Performance in frames per second for path-traced (using a
maximum path length of 13) car exterior and interior (see Figure 7), with
ambient illumination (all directions equally important) or importance-sampled
HDRI illumination.

its four lanes of fourSIMD elements design to efficiently
realize single-rayQuad-BVH traversal on a 16-wide SIMD
architecture.

Second, we have introduced a hybrid traversal scheme that
automatically uses packet tracing for coherent rays, and single-
ray tracing for incoherent ones. Being able to use exactly the
same data structure for both packet and single-ray tracing not
only avoids the need for maintaining two separate structures, it
also allows our hybrid scheme to switch back and forth in mid
traversal, allowing to pick the best traversal mode not onlyon
a per packet basis, but even for different subtrees traversed by
the same packet.

A. Discussion

In this paper, we have considered the per-lane SIMD ap-
proach only for the special case of single-ray QBVH traversal.
While we believe that the general concept carries further
than that, how exactly to use it for other applications—or for
other SIMD architectures—remains to be investigated in more
detail. However, an extension to handle packets with more than
16 rays is straightforward. Whether such larger packets are
efficient for tracing incoherent ray paths is rather questionable
as a large fraction of the L1/L2 cache will be consumed for
just holding ray data.

Our scheme is currently implemented using IntelR© C++
Compiler intrinsics (quite similar to [28]). This is somewhat
more laborious than coding in an auto-vectorizing language
like OpenCL, but otherwise works in exactly the same way as
on any other SIMD CPU. The intrinsics code such generated
can also be wrapped in a library and be made available to
high-level languages in a transparent fashion.

Mapping the hybrid algorithm to other hardware platforms
using high-level languages like OpenCL should be possible.
The packet tracing part maps well and the cross-SIMD op-
erations in the single ray tracing part could be emulated by
using shared memory to exchange data between SIMD lanes. If
the underlying hardware offers hardware support for a general
permutation of SIMD lanes within a register, the storing
and loading to and from shared memory could be omitted
completely. However, a detailed evaluation of the efficiency
of our approach for other hardware architectures is beyond
the scope for this paper.

Performance-wise, despite accelerating incoherent rays by
up to 2× (vs. packet tracing), such rays are still about
2× slower than coherent ones. This, is quite in line with
other architectures [3], but might still leave room for further
improvements.
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On the upside, the resulting scheme is fully automatic,
and does not need any user intervention at all. In terms of
performance our scheme combines the best of two worlds: it is
much faster than single-ray tracing and equally fast as packet
tracing for coherent rays, and up to 2× faster than packets
(1.2−1.3× faster than single ray tracing) for incoherent rays;
and for all tested scenes and ray distributions is faster than
either of those two techniques.

As previously mentioned KNF shares many architectural
properties with KNC, and we therefore believe that our ap-
proach is directly applicable to KNC and will provide the
same benefits.

B. Future Work

It would be interesting to also map our technique to the 8-
wide AVX instruction set that is already available on mainline
CPUs. For applications where a certain amount of coherence
is available it also looks promising to further extend our
techniques to start with packets much larger than SIMD
width: ultimately, one could even start with aggressive frustum
traversal techniques, gradually fall back to packets (possibly
including re-packing), and eventually fall back to single-ray
tracing. Most interestingly, this approach would also allow
some re-packing for shading.

VIII. P SEUDOCODE

Simplified pseudo C++ code for switching between packet
and single ray tracing, and for the optimized single ray
traversal kernel:

#define SIMD_UTIL_SWITCH_THRESHOLD 7
mic_f // - vector SIMD class for 16 floats
mic_i // - vector SIMD class for 16 ints
mic3f // - vector SIMD class for 3 x 16 floats
mic_m // - class for the 16-bit mask type
// - utility functions
c = sel(mask,a,b); // - c[i] = mask[i] ? a[i] : b[i]
b = per_lane_max(a); // - per-lane max : two max ops + swizzle
b = per_lane_min(a); // - per-lane min : two max ops + swizzle
a = toAOS4f(i,b); // - SoA to AoS, mic3f -> mic_f
// - node and distance stack for the ray packet
int stack_node_p[MAX_STACK_DEPTH];
mic_f stack_dist_p[MAX_STACK_DEPTH];
// - node and distance stack for a single ray
int stack_node_s[MAX_STACK_DEPTH];
float stack_dist_s[MAX_STACK_DEPTH];
// - ray packet data
mic3f origin, direction, rcp_direction;
mic_f max_dist; // - max intersection distance
mic_i triangleID; // - intersection primitive ID
mic_m m_active; // - mask for active rays
// - dummy node to remove branch in inner-loop
stack_node_p[0] = -1;
stack_dist_p[0] = infinity;
stack_node_s[0] = -1;
stack_node_p[1] = qbvh_root; // - QBVH root node
stack_dist_p[1] = sel(m_active,epsilon,max_distance);
int sindex = 2; // - stack index
while (1) {

stack_index--;
int curNode = stack_node_p[sindex];
mic_f dist = stack_dist_packet[sindex];
mic_m m_dist = lt(dist,max_distance);
if (curNode == (int)-1) break; // - curNode == dummy node
if (m_dist == 0) continue;
if (countbits(m_dist) <= SIMD_UTIL_SWITCH_THRESHOLD) {

// - SINGLE RAY TRACING
int ray_index = -1;
while((ray_index = bitscan(ray_index,m_dist)) != -1) {

// - Extract and convert data for single ray from
// - SoA to AoS layout and pre-load into registers
mic_f org_aos = toAOS4f(ray_index,origin);

mic_f dir_aos = toAOS4f(ray_index,direction);
mic_f rdir_aos = toAOS4f(ray_index,rcp_direction);
mic_f dist_aos = max_dist[ray_index];
...

}
}
else {
... // - PACKET RAY TRACING

}
}

// === fast QBVH single ray traversal code ===
while (!isLeaf(curNode)) {

QuadNode* qptr = childPtr(qbvh,curNode);
mic_f minXYZ = (free_load(qptr->min) - org_aos) * rdir_aos;
mic_f maxXYZ = (free_load(qptr->max) - org_aos) * rdir_aos;
// - speculative stack ’pop’, ’sindex’ is stack index
curNode = stack_node_single[--sindex];
// - minimum/maximum x,y,z slabs and distance
mic_f minXYZ_min = sel(0x7777,min(minXYZ,maxXYZ),dist_aos);
mic_f maxXYZ_max = sel(0x7777,max(minXYZ,maxXYZ),max_dist_aos);
// - each lane set to minimum/maximum of x,y,z, and distance
mic_f near4 = per_lane_max(minXYZ_min);
mic_f far4 = per_lane_min(maxXYZ_max);
mic_m m_lr_hit = le(0x8888,near4,far4);
mic_f near4_min = sel(m_lr_hit,near4,infinity);
if (m_lr_hit == 0) continue; // - no hit
int pos_first = bitscan(m_lr_hit);
int num_m_lr_hit = countbits(m_lr_hit);
sindex++;
curNode = ((int*)b_min)[pos_first];
if (num_m_lr_hit == 1) continue; // - just single hit
int pos_sec = bitscan(pos_first,i_lr_hit);
if (num_m_lr_hit == 2) { // - two hits
int dist_first = ((int*)&near4)[pos_first];
int dist_sec = ((int*)&near4)[pos_sec];
int node_first = curNode;
// - compare as integer
if (dist_first <= dist_sec) {

int node_sec = ((int*)b_min)[pos_sec];
stack_node_single[sindex] = node_sec;
((int*)stack_near_single)[sindex] = dist_sec;

} else {
int node_sec = ((int*)b_min)[pos_sec];
stack_node_single[sindex] = curNode;
((int*)stack_near_single)[sindex] = dist_first;
curNode = node_sec;

}
sindex++; continue;

}
// - 3 or 4 hits, find closest first, push others onto stack
mic_f child_min_dist = min_across_4lanes(near4_min);
mic_m m_child_min_dist = eq(m_lr_hit,child_min_dist,near4);
int pos = bitscan(m_child_min_dist);
mic_m m_pos = andnot(m_lr_hit, // - clear first bit set

andnot(m_child_min_dist,m_child_min_dist-1));
mic_i b_min_node = load16i((int*)qptr->min);
curNode = ((int*)b_min)[pos];
// push all other nodes onto stack
packstore16i(m_pos,&stack_node_single[sindex],b_min_node);
packstore16f(m_pos,&stack_near_single[sindex],near4);
// - increase stack index
sindex += countbits(i_lr_hit) - 1;

}
}
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